| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspcl.k |  |-  K = ( RSpan ` R ) | 
						
							| 2 |  | rspcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | rsp1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 4 | 2 3 | ringidcl |  |-  ( R e. Ring -> .1. e. B ) | 
						
							| 5 | 4 | snssd |  |-  ( R e. Ring -> { .1. } C_ B ) | 
						
							| 6 | 1 2 | rspssid |  |-  ( ( R e. Ring /\ { .1. } C_ B ) -> { .1. } C_ ( K ` { .1. } ) ) | 
						
							| 7 | 5 6 | mpdan |  |-  ( R e. Ring -> { .1. } C_ ( K ` { .1. } ) ) | 
						
							| 8 | 3 | fvexi |  |-  .1. e. _V | 
						
							| 9 | 8 | snss |  |-  ( .1. e. ( K ` { .1. } ) <-> { .1. } C_ ( K ` { .1. } ) ) | 
						
							| 10 | 7 9 | sylibr |  |-  ( R e. Ring -> .1. e. ( K ` { .1. } ) ) | 
						
							| 11 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 12 | 1 2 11 | rspcl |  |-  ( ( R e. Ring /\ { .1. } C_ B ) -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) | 
						
							| 13 | 5 12 | mpdan |  |-  ( R e. Ring -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) | 
						
							| 14 | 11 2 3 | lidl1el |  |-  ( ( R e. Ring /\ ( K ` { .1. } ) e. ( LIdeal ` R ) ) -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) | 
						
							| 15 | 13 14 | mpdan |  |-  ( R e. Ring -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) | 
						
							| 16 | 10 15 | mpbid |  |-  ( R e. Ring -> ( K ` { .1. } ) = B ) |