Step |
Hyp |
Ref |
Expression |
1 |
|
rspcl.k |
|- K = ( RSpan ` R ) |
2 |
|
rspcl.b |
|- B = ( Base ` R ) |
3 |
|
rsp1.o |
|- .1. = ( 1r ` R ) |
4 |
2 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
5 |
4
|
snssd |
|- ( R e. Ring -> { .1. } C_ B ) |
6 |
1 2
|
rspssid |
|- ( ( R e. Ring /\ { .1. } C_ B ) -> { .1. } C_ ( K ` { .1. } ) ) |
7 |
5 6
|
mpdan |
|- ( R e. Ring -> { .1. } C_ ( K ` { .1. } ) ) |
8 |
3
|
fvexi |
|- .1. e. _V |
9 |
8
|
snss |
|- ( .1. e. ( K ` { .1. } ) <-> { .1. } C_ ( K ` { .1. } ) ) |
10 |
7 9
|
sylibr |
|- ( R e. Ring -> .1. e. ( K ` { .1. } ) ) |
11 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
12 |
1 2 11
|
rspcl |
|- ( ( R e. Ring /\ { .1. } C_ B ) -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) |
13 |
5 12
|
mpdan |
|- ( R e. Ring -> ( K ` { .1. } ) e. ( LIdeal ` R ) ) |
14 |
11 2 3
|
lidl1el |
|- ( ( R e. Ring /\ ( K ` { .1. } ) e. ( LIdeal ` R ) ) -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) |
15 |
13 14
|
mpdan |
|- ( R e. Ring -> ( .1. e. ( K ` { .1. } ) <-> ( K ` { .1. } ) = B ) ) |
16 |
10 15
|
mpbid |
|- ( R e. Ring -> ( K ` { .1. } ) = B ) |