Step |
Hyp |
Ref |
Expression |
1 |
|
rspc.1 |
|- F/ x ps |
2 |
|
rspc.2 |
|- ( x = A -> ( ph <-> ps ) ) |
3 |
|
df-ral |
|- ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) |
4 |
|
nfcv |
|- F/_ x A |
5 |
|
nfv |
|- F/ x A e. B |
6 |
5 1
|
nfim |
|- F/ x ( A e. B -> ps ) |
7 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
8 |
7 2
|
imbi12d |
|- ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) |
9 |
4 6 8
|
spcgf |
|- ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) |
10 |
9
|
pm2.43a |
|- ( A e. B -> ( A. x ( x e. B -> ph ) -> ps ) ) |
11 |
3 10
|
syl5bi |
|- ( A e. B -> ( A. x e. B ph -> ps ) ) |