Metamath Proof Explorer


Theorem rspc2

Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses rspc2.1
|- F/ x ch
rspc2.2
|- F/ y ps
rspc2.3
|- ( x = A -> ( ph <-> ch ) )
rspc2.4
|- ( y = B -> ( ch <-> ps ) )
Assertion rspc2
|- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) )

Proof

Step Hyp Ref Expression
1 rspc2.1
 |-  F/ x ch
2 rspc2.2
 |-  F/ y ps
3 rspc2.3
 |-  ( x = A -> ( ph <-> ch ) )
4 rspc2.4
 |-  ( y = B -> ( ch <-> ps ) )
5 nfcv
 |-  F/_ x D
6 5 1 nfralw
 |-  F/ x A. y e. D ch
7 3 ralbidv
 |-  ( x = A -> ( A. y e. D ph <-> A. y e. D ch ) )
8 6 7 rspc
 |-  ( A e. C -> ( A. x e. C A. y e. D ph -> A. y e. D ch ) )
9 2 4 rspc
 |-  ( B e. D -> ( A. y e. D ch -> ps ) )
10 8 9 sylan9
 |-  ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) )