Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
||
Assertion | rspc2v | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
2 | rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
|
3 | 1 | ralbidv | |- ( x = A -> ( A. y e. D ph <-> A. y e. D ch ) ) |
4 | 3 | rspcv | |- ( A e. C -> ( A. x e. C A. y e. D ph -> A. y e. D ch ) ) |
5 | 2 | rspcv | |- ( B e. D -> ( A. y e. D ch -> ps ) ) |
6 | 4 5 | sylan9 | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) |