Metamath Proof Explorer


Theorem rspc2va

Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014)

Ref Expression
Hypotheses rspc2v.1
|- ( x = A -> ( ph <-> ch ) )
rspc2v.2
|- ( y = B -> ( ch <-> ps ) )
Assertion rspc2va
|- ( ( ( A e. C /\ B e. D ) /\ A. x e. C A. y e. D ph ) -> ps )

Proof

Step Hyp Ref Expression
1 rspc2v.1
 |-  ( x = A -> ( ph <-> ch ) )
2 rspc2v.2
 |-  ( y = B -> ( ch <-> ps ) )
3 1 2 rspc2v
 |-  ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) )
4 3 imp
 |-  ( ( ( A e. C /\ B e. D ) /\ A. x e. C A. y e. D ph ) -> ps )