Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
||
Assertion | rspc2va | |- ( ( ( A e. C /\ B e. D ) /\ A. x e. C A. y e. D ph ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2v.1 | |- ( x = A -> ( ph <-> ch ) ) |
|
2 | rspc2v.2 | |- ( y = B -> ( ch <-> ps ) ) |
|
3 | 1 2 | rspc2v | |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) |
4 | 3 | imp | |- ( ( ( A e. C /\ B e. D ) /\ A. x e. C A. y e. D ph ) -> ps ) |