Step |
Hyp |
Ref |
Expression |
1 |
|
rspc2vd.a |
|- ( x = A -> ( th <-> ch ) ) |
2 |
|
rspc2vd.b |
|- ( y = B -> ( ch <-> ps ) ) |
3 |
|
rspc2vd.c |
|- ( ph -> A e. C ) |
4 |
|
rspc2vd.d |
|- ( ( ph /\ x = A ) -> D = E ) |
5 |
|
rspc2vd.e |
|- ( ph -> B e. E ) |
6 |
3 4
|
csbied |
|- ( ph -> [_ A / x ]_ D = E ) |
7 |
5 6
|
eleqtrrd |
|- ( ph -> B e. [_ A / x ]_ D ) |
8 |
|
nfcsb1v |
|- F/_ x [_ A / x ]_ D |
9 |
|
nfv |
|- F/ x ch |
10 |
8 9
|
nfralw |
|- F/ x A. y e. [_ A / x ]_ D ch |
11 |
|
csbeq1a |
|- ( x = A -> D = [_ A / x ]_ D ) |
12 |
11 1
|
raleqbidv |
|- ( x = A -> ( A. y e. D th <-> A. y e. [_ A / x ]_ D ch ) ) |
13 |
10 12
|
rspc |
|- ( A e. C -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) |
14 |
3 13
|
syl |
|- ( ph -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) |
15 |
2
|
rspcv |
|- ( B e. [_ A / x ]_ D -> ( A. y e. [_ A / x ]_ D ch -> ps ) ) |
16 |
7 14 15
|
sylsyld |
|- ( ph -> ( A. x e. C A. y e. D th -> ps ) ) |