| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspc2vd.a |  |-  ( x = A -> ( th <-> ch ) ) | 
						
							| 2 |  | rspc2vd.b |  |-  ( y = B -> ( ch <-> ps ) ) | 
						
							| 3 |  | rspc2vd.c |  |-  ( ph -> A e. C ) | 
						
							| 4 |  | rspc2vd.d |  |-  ( ( ph /\ x = A ) -> D = E ) | 
						
							| 5 |  | rspc2vd.e |  |-  ( ph -> B e. E ) | 
						
							| 6 | 3 4 | csbied |  |-  ( ph -> [_ A / x ]_ D = E ) | 
						
							| 7 | 5 6 | eleqtrrd |  |-  ( ph -> B e. [_ A / x ]_ D ) | 
						
							| 8 |  | nfcsb1v |  |-  F/_ x [_ A / x ]_ D | 
						
							| 9 |  | nfv |  |-  F/ x ch | 
						
							| 10 | 8 9 | nfralw |  |-  F/ x A. y e. [_ A / x ]_ D ch | 
						
							| 11 |  | csbeq1a |  |-  ( x = A -> D = [_ A / x ]_ D ) | 
						
							| 12 | 11 1 | raleqbidv |  |-  ( x = A -> ( A. y e. D th <-> A. y e. [_ A / x ]_ D ch ) ) | 
						
							| 13 | 10 12 | rspc |  |-  ( A e. C -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) | 
						
							| 14 | 3 13 | syl |  |-  ( ph -> ( A. x e. C A. y e. D th -> A. y e. [_ A / x ]_ D ch ) ) | 
						
							| 15 | 2 | rspcv |  |-  ( B e. [_ A / x ]_ D -> ( A. y e. [_ A / x ]_ D ch -> ps ) ) | 
						
							| 16 | 7 14 15 | sylsyld |  |-  ( ph -> ( A. x e. C A. y e. D th -> ps ) ) |