Description: Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspcv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | rspccva | |- ( ( A. x e. B ph /\ A e. B ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | 1 | rspcv | |- ( A e. B -> ( A. x e. B ph -> ps ) ) |
| 3 | 2 | impcom | |- ( ( A. x e. B ph /\ A e. B ) -> ps ) |