Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcdf.1 | |- F/ x ph |
|
rspcdf.2 | |- F/ x ch |
||
rspcdf.3 | |- ( ph -> A e. B ) |
||
rspcdf.4 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
Assertion | rspcdf | |- ( ph -> ( A. x e. B ps -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdf.1 | |- F/ x ph |
|
2 | rspcdf.2 | |- F/ x ch |
|
3 | rspcdf.3 | |- ( ph -> A e. B ) |
|
4 | rspcdf.4 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
5 | 4 | ex | |- ( ph -> ( x = A -> ( ps <-> ch ) ) ) |
6 | 1 5 | alrimi | |- ( ph -> A. x ( x = A -> ( ps <-> ch ) ) ) |
7 | 2 | rspct | |- ( A. x ( x = A -> ( ps <-> ch ) ) -> ( A e. B -> ( A. x e. B ps -> ch ) ) ) |
8 | 6 3 7 | sylc | |- ( ph -> ( A. x e. B ps -> ch ) ) |