Metamath Proof Explorer


Theorem rspcdf

Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypotheses rspcdf.1
|- F/ x ph
rspcdf.2
|- F/ x ch
rspcdf.3
|- ( ph -> A e. B )
rspcdf.4
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion rspcdf
|- ( ph -> ( A. x e. B ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rspcdf.1
 |-  F/ x ph
2 rspcdf.2
 |-  F/ x ch
3 rspcdf.3
 |-  ( ph -> A e. B )
4 rspcdf.4
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
5 4 ex
 |-  ( ph -> ( x = A -> ( ps <-> ch ) ) )
6 1 5 alrimi
 |-  ( ph -> A. x ( x = A -> ( ps <-> ch ) ) )
7 2 rspct
 |-  ( A. x ( x = A -> ( ps <-> ch ) ) -> ( A e. B -> ( A. x e. B ps -> ch ) ) )
8 6 3 7 sylc
 |-  ( ph -> ( A. x e. B ps -> ch ) )