Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcdf.1 | |- F/ x ph | |
| rspcdf.2 | |- F/ x ch | ||
| rspcdf.3 | |- ( ph -> A e. B ) | ||
| rspcdf.4 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | ||
| Assertion | rspcdf | |- ( ph -> ( A. x e. B ps -> ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcdf.1 | |- F/ x ph | |
| 2 | rspcdf.2 | |- F/ x ch | |
| 3 | rspcdf.3 | |- ( ph -> A e. B ) | |
| 4 | rspcdf.4 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) | |
| 5 | 4 | ex | |- ( ph -> ( x = A -> ( ps <-> ch ) ) ) | 
| 6 | 1 5 | alrimi | |- ( ph -> A. x ( x = A -> ( ps <-> ch ) ) ) | 
| 7 | 2 | rspct | |- ( A. x ( x = A -> ( ps <-> ch ) ) -> ( A e. B -> ( A. x e. B ps -> ch ) ) ) | 
| 8 | 6 3 7 | sylc | |- ( ph -> ( A. x e. B ps -> ch ) ) |