Metamath Proof Explorer


Theorem rspcdv

Description: Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcdv.1
|- ( ph -> A e. B )
rspcdv.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion rspcdv
|- ( ph -> ( A. x e. B ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rspcdv.1
 |-  ( ph -> A e. B )
2 rspcdv.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 2 biimpd
 |-  ( ( ph /\ x = A ) -> ( ps -> ch ) )
4 1 3 rspcimdv
 |-  ( ph -> ( A. x e. B ps -> ch ) )