Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rspceaimv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
Assertion | rspceaimv | |- ( ( A e. B /\ A. y e. C ( ps -> ch ) ) -> E. x e. B A. y e. C ( ph -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceaimv.1 | |- ( x = A -> ( ph <-> ps ) ) |
|
2 | 1 | imbi1d | |- ( x = A -> ( ( ph -> ch ) <-> ( ps -> ch ) ) ) |
3 | 2 | ralbidv | |- ( x = A -> ( A. y e. C ( ph -> ch ) <-> A. y e. C ( ps -> ch ) ) ) |
4 | 3 | rspcev | |- ( ( A e. B /\ A. y e. C ( ps -> ch ) ) -> E. x e. B A. y e. C ( ph -> ch ) ) |