Metamath Proof Explorer


Theorem rspceaimv

Description: Restricted existential specialization of a universally quantified implication. (Contributed by BJ, 24-Aug-2022)

Ref Expression
Hypothesis rspceaimv.1
|- ( x = A -> ( ph <-> ps ) )
Assertion rspceaimv
|- ( ( A e. B /\ A. y e. C ( ps -> ch ) ) -> E. x e. B A. y e. C ( ph -> ch ) )

Proof

Step Hyp Ref Expression
1 rspceaimv.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 imbi1d
 |-  ( x = A -> ( ( ph -> ch ) <-> ( ps -> ch ) ) )
3 2 ralbidv
 |-  ( x = A -> ( A. y e. C ( ph -> ch ) <-> A. y e. C ( ps -> ch ) ) )
4 3 rspcev
 |-  ( ( A e. B /\ A. y e. C ( ps -> ch ) ) -> E. x e. B A. y e. C ( ph -> ch ) )