Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspceb2dv.1 | |- ( ( ph /\ x e. B ) -> ( ps -> ch ) ) |
|
rspceb2dv.2 | |- ( ( ph /\ ch ) -> A e. B ) |
||
rspceb2dv.3 | |- ( ( ph /\ ch ) -> th ) |
||
rspceb2dv.4 | |- ( x = A -> ( ps <-> th ) ) |
||
Assertion | rspceb2dv | |- ( ph -> ( E. x e. B ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspceb2dv.1 | |- ( ( ph /\ x e. B ) -> ( ps -> ch ) ) |
|
2 | rspceb2dv.2 | |- ( ( ph /\ ch ) -> A e. B ) |
|
3 | rspceb2dv.3 | |- ( ( ph /\ ch ) -> th ) |
|
4 | rspceb2dv.4 | |- ( x = A -> ( ps <-> th ) ) |
|
5 | 1 | rexlimdva | |- ( ph -> ( E. x e. B ps -> ch ) ) |
6 | 4 | rspcev | |- ( ( A e. B /\ th ) -> E. x e. B ps ) |
7 | 2 3 6 | syl2anc | |- ( ( ph /\ ch ) -> E. x e. B ps ) |
8 | 7 | ex | |- ( ph -> ( ch -> E. x e. B ps ) ) |
9 | 5 8 | impbid | |- ( ph -> ( E. x e. B ps <-> ch ) ) |