Metamath Proof Explorer


Theorem rspceb2dv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by Zhi Wang, 28-Sep-2024)

Ref Expression
Hypotheses rspceb2dv.1
|- ( ( ph /\ x e. B ) -> ( ps -> ch ) )
rspceb2dv.2
|- ( ( ph /\ ch ) -> A e. B )
rspceb2dv.3
|- ( ( ph /\ ch ) -> th )
rspceb2dv.4
|- ( x = A -> ( ps <-> th ) )
Assertion rspceb2dv
|- ( ph -> ( E. x e. B ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 rspceb2dv.1
 |-  ( ( ph /\ x e. B ) -> ( ps -> ch ) )
2 rspceb2dv.2
 |-  ( ( ph /\ ch ) -> A e. B )
3 rspceb2dv.3
 |-  ( ( ph /\ ch ) -> th )
4 rspceb2dv.4
 |-  ( x = A -> ( ps <-> th ) )
5 1 rexlimdva
 |-  ( ph -> ( E. x e. B ps -> ch ) )
6 4 rspcev
 |-  ( ( A e. B /\ th ) -> E. x e. B ps )
7 2 3 6 syl2anc
 |-  ( ( ph /\ ch ) -> E. x e. B ps )
8 7 ex
 |-  ( ph -> ( ch -> E. x e. B ps ) )
9 5 8 impbid
 |-  ( ph -> ( E. x e. B ps <-> ch ) )