Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcdv.1 | |- ( ph -> A e. B ) |
|
rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) |
||
Assertion | rspcebdv | |- ( ph -> ( E. x e. B ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | |- ( ph -> A e. B ) |
|
2 | rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
3 | rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) |
|
4 | 3 2 | syldan | |- ( ( ph /\ ps ) -> ( ps <-> ch ) ) |
5 | 4 | biimpd | |- ( ( ph /\ ps ) -> ( ps -> ch ) ) |
6 | 5 | expcom | |- ( ps -> ( ph -> ( ps -> ch ) ) ) |
7 | 6 | pm2.43b | |- ( ph -> ( ps -> ch ) ) |
8 | 7 | rexlimdvw | |- ( ph -> ( E. x e. B ps -> ch ) ) |
9 | 1 2 | rspcedv | |- ( ph -> ( ch -> E. x e. B ps ) ) |
10 | 8 9 | impbid | |- ( ph -> ( E. x e. B ps <-> ch ) ) |