Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcdv.1 | |- ( ph -> A e. B ) |
|
| rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
||
| rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) |
||
| Assertion | rspcebdv | |- ( ph -> ( E. x e. B ps <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | |- ( ph -> A e. B ) |
|
| 2 | rspcdv.2 | |- ( ( ph /\ x = A ) -> ( ps <-> ch ) ) |
|
| 3 | rspcebdv.1 | |- ( ( ph /\ ps ) -> x = A ) |
|
| 4 | 3 2 | syldan | |- ( ( ph /\ ps ) -> ( ps <-> ch ) ) |
| 5 | 4 | biimpd | |- ( ( ph /\ ps ) -> ( ps -> ch ) ) |
| 6 | 5 | expcom | |- ( ps -> ( ph -> ( ps -> ch ) ) ) |
| 7 | 6 | pm2.43b | |- ( ph -> ( ps -> ch ) ) |
| 8 | 7 | rexlimdvw | |- ( ph -> ( E. x e. B ps -> ch ) ) |
| 9 | 1 2 | rspcedv | |- ( ph -> ( ch -> E. x e. B ps ) ) |
| 10 | 8 9 | impbid | |- ( ph -> ( E. x e. B ps <-> ch ) ) |