Metamath Proof Explorer


Theorem rspcebdv

Description: Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022)

Ref Expression
Hypotheses rspcdv.1
|- ( ph -> A e. B )
rspcdv.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
rspcebdv.1
|- ( ( ph /\ ps ) -> x = A )
Assertion rspcebdv
|- ( ph -> ( E. x e. B ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 rspcdv.1
 |-  ( ph -> A e. B )
2 rspcdv.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 rspcebdv.1
 |-  ( ( ph /\ ps ) -> x = A )
4 3 2 syldan
 |-  ( ( ph /\ ps ) -> ( ps <-> ch ) )
5 4 biimpd
 |-  ( ( ph /\ ps ) -> ( ps -> ch ) )
6 5 expcom
 |-  ( ps -> ( ph -> ( ps -> ch ) ) )
7 6 pm2.43b
 |-  ( ph -> ( ps -> ch ) )
8 7 rexlimdvw
 |-  ( ph -> ( E. x e. B ps -> ch ) )
9 1 2 rspcedv
 |-  ( ph -> ( ch -> E. x e. B ps ) )
10 8 9 impbid
 |-  ( ph -> ( E. x e. B ps <-> ch ) )