Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspced.1 | |- F/ x ch |
|
| rspced.2 | |- F/_ x A |
||
| rspced.3 | |- F/_ x B |
||
| rspced.4 | |- ( ph -> A e. B ) |
||
| rspced.5 | |- ( ph -> ch ) |
||
| rspced.6 | |- ( x = A -> ( ps <-> ch ) ) |
||
| Assertion | rspced | |- ( ph -> E. x e. B ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspced.1 | |- F/ x ch |
|
| 2 | rspced.2 | |- F/_ x A |
|
| 3 | rspced.3 | |- F/_ x B |
|
| 4 | rspced.4 | |- ( ph -> A e. B ) |
|
| 5 | rspced.5 | |- ( ph -> ch ) |
|
| 6 | rspced.6 | |- ( x = A -> ( ps <-> ch ) ) |
|
| 7 | 1 2 3 6 | rspcef | |- ( ( A e. B /\ ch ) -> E. x e. B ps ) |
| 8 | 4 5 7 | syl2anc | |- ( ph -> E. x e. B ps ) |