Metamath Proof Explorer


Theorem rspcedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcdv.1
|- ( ph -> A e. B )
rspcdv.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
Assertion rspcedv
|- ( ph -> ( ch -> E. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 rspcdv.1
 |-  ( ph -> A e. B )
2 rspcdv.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 2 biimprd
 |-  ( ( ph /\ x = A ) -> ( ch -> ps ) )
4 1 3 rspcimedv
 |-  ( ph -> ( ch -> E. x e. B ps ) )