Metamath Proof Explorer


Theorem rspcedvd

Description: Restricted existential specialization, using implicit substitution. Variant of rspcedv . (Contributed by AV, 27-Nov-2019)

Ref Expression
Hypotheses rspcedvd.1
|- ( ph -> A e. B )
rspcedvd.2
|- ( ( ph /\ x = A ) -> ( ps <-> ch ) )
rspcedvd.3
|- ( ph -> ch )
Assertion rspcedvd
|- ( ph -> E. x e. B ps )

Proof

Step Hyp Ref Expression
1 rspcedvd.1
 |-  ( ph -> A e. B )
2 rspcedvd.2
 |-  ( ( ph /\ x = A ) -> ( ps <-> ch ) )
3 rspcedvd.3
 |-  ( ph -> ch )
4 1 2 rspcedv
 |-  ( ph -> ( ch -> E. x e. B ps ) )
5 3 4 mpd
 |-  ( ph -> E. x e. B ps )