Description: Restricted existential specialization in an equality, using implicit substitution. (Contributed by BJ, 2-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rspceeqv.1 | |- ( x = A -> C = D ) |
|
| Assertion | rspceeqv | |- ( ( A e. B /\ E = D ) -> E. x e. B E = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspceeqv.1 | |- ( x = A -> C = D ) |
|
| 2 | 1 | eqeq2d | |- ( x = A -> ( E = C <-> E = D ) ) |
| 3 | 2 | rspcev | |- ( ( A e. B /\ E = D ) -> E. x e. B E = C ) |