Metamath Proof Explorer


Theorem rspcef

Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rspcef.1
|- F/ x ps
rspcef.2
|- F/_ x A
rspcef.3
|- F/_ x B
rspcef.4
|- ( x = A -> ( ph <-> ps ) )
Assertion rspcef
|- ( ( A e. B /\ ps ) -> E. x e. B ph )

Proof

Step Hyp Ref Expression
1 rspcef.1
 |-  F/ x ps
2 rspcef.2
 |-  F/_ x A
3 rspcef.3
 |-  F/_ x B
4 rspcef.4
 |-  ( x = A -> ( ph <-> ps ) )
5 1 2 3 4 rspcegf
 |-  ( ( A e. B /\ ps ) -> E. x e. B ph )