Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcef.1 | |- F/ x ps |
|
rspcef.2 | |- F/_ x A |
||
rspcef.3 | |- F/_ x B |
||
rspcef.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
Assertion | rspcef | |- ( ( A e. B /\ ps ) -> E. x e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcef.1 | |- F/ x ps |
|
2 | rspcef.2 | |- F/_ x A |
|
3 | rspcef.3 | |- F/_ x B |
|
4 | rspcef.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
5 | 1 2 3 4 | rspcegf | |- ( ( A e. B /\ ps ) -> E. x e. B ph ) |