Step |
Hyp |
Ref |
Expression |
1 |
|
rspcegf.1 |
|- F/ x ps |
2 |
|
rspcegf.2 |
|- F/_ x A |
3 |
|
rspcegf.3 |
|- F/_ x B |
4 |
|
rspcegf.4 |
|- ( x = A -> ( ph <-> ps ) ) |
5 |
2 3
|
nfel |
|- F/ x A e. B |
6 |
5 1
|
nfan |
|- F/ x ( A e. B /\ ps ) |
7 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
8 |
7 4
|
anbi12d |
|- ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) |
9 |
2 6 8
|
spcegf |
|- ( A e. B -> ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) ) |
10 |
9
|
anabsi5 |
|- ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) |
11 |
|
df-rex |
|- ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) |
12 |
10 11
|
sylibr |
|- ( ( A e. B /\ ps ) -> E. x e. B ph ) |