| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspcegf.1 |  |-  F/ x ps | 
						
							| 2 |  | rspcegf.2 |  |-  F/_ x A | 
						
							| 3 |  | rspcegf.3 |  |-  F/_ x B | 
						
							| 4 |  | rspcegf.4 |  |-  ( x = A -> ( ph <-> ps ) ) | 
						
							| 5 | 2 3 | nfel |  |-  F/ x A e. B | 
						
							| 6 | 5 1 | nfan |  |-  F/ x ( A e. B /\ ps ) | 
						
							| 7 |  | eleq1 |  |-  ( x = A -> ( x e. B <-> A e. B ) ) | 
						
							| 8 | 7 4 | anbi12d |  |-  ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) | 
						
							| 9 | 2 6 8 | spcegf |  |-  ( A e. B -> ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) ) | 
						
							| 10 | 9 | anabsi5 |  |-  ( ( A e. B /\ ps ) -> E. x ( x e. B /\ ph ) ) | 
						
							| 11 |  | df-rex |  |-  ( E. x e. B ph <-> E. x ( x e. B /\ ph ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( ( A e. B /\ ps ) -> E. x e. B ph ) |