Step |
Hyp |
Ref |
Expression |
1 |
|
rspcimdv.1 |
|- ( ph -> A e. B ) |
2 |
|
rspcimdv.2 |
|- ( ( ph /\ x = A ) -> ( ps -> ch ) ) |
3 |
|
df-ral |
|- ( A. x e. B ps <-> A. x ( x e. B -> ps ) ) |
4 |
|
simpr |
|- ( ( ph /\ x = A ) -> x = A ) |
5 |
4
|
eleq1d |
|- ( ( ph /\ x = A ) -> ( x e. B <-> A e. B ) ) |
6 |
5
|
biimprd |
|- ( ( ph /\ x = A ) -> ( A e. B -> x e. B ) ) |
7 |
6 2
|
imim12d |
|- ( ( ph /\ x = A ) -> ( ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
8 |
1 7
|
spcimdv |
|- ( ph -> ( A. x ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
9 |
1 8
|
mpid |
|- ( ph -> ( A. x ( x e. B -> ps ) -> ch ) ) |
10 |
3 9
|
syl5bi |
|- ( ph -> ( A. x e. B ps -> ch ) ) |