Metamath Proof Explorer


Theorem rspcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1
|- ( ph -> A e. B )
rspcimdv.2
|- ( ( ph /\ x = A ) -> ( ps -> ch ) )
Assertion rspcimdv
|- ( ph -> ( A. x e. B ps -> ch ) )

Proof

Step Hyp Ref Expression
1 rspcimdv.1
 |-  ( ph -> A e. B )
2 rspcimdv.2
 |-  ( ( ph /\ x = A ) -> ( ps -> ch ) )
3 df-ral
 |-  ( A. x e. B ps <-> A. x ( x e. B -> ps ) )
4 simpr
 |-  ( ( ph /\ x = A ) -> x = A )
5 4 eleq1d
 |-  ( ( ph /\ x = A ) -> ( x e. B <-> A e. B ) )
6 5 biimprd
 |-  ( ( ph /\ x = A ) -> ( A e. B -> x e. B ) )
7 6 2 imim12d
 |-  ( ( ph /\ x = A ) -> ( ( x e. B -> ps ) -> ( A e. B -> ch ) ) )
8 1 7 spcimdv
 |-  ( ph -> ( A. x ( x e. B -> ps ) -> ( A e. B -> ch ) ) )
9 1 8 mpid
 |-  ( ph -> ( A. x ( x e. B -> ps ) -> ch ) )
10 3 9 syl5bi
 |-  ( ph -> ( A. x e. B ps -> ch ) )