| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspcimdv.1 |
|- ( ph -> A e. B ) |
| 2 |
|
rspcimdv.2 |
|- ( ( ph /\ x = A ) -> ( ps -> ch ) ) |
| 3 |
|
df-ral |
|- ( A. x e. B ps <-> A. x ( x e. B -> ps ) ) |
| 4 |
|
simpr |
|- ( ( ph /\ x = A ) -> x = A ) |
| 5 |
4
|
eleq1d |
|- ( ( ph /\ x = A ) -> ( x e. B <-> A e. B ) ) |
| 6 |
5
|
biimprd |
|- ( ( ph /\ x = A ) -> ( A e. B -> x e. B ) ) |
| 7 |
6 2
|
imim12d |
|- ( ( ph /\ x = A ) -> ( ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
| 8 |
1 7
|
spcimdv |
|- ( ph -> ( A. x ( x e. B -> ps ) -> ( A e. B -> ch ) ) ) |
| 9 |
1 8
|
mpid |
|- ( ph -> ( A. x ( x e. B -> ps ) -> ch ) ) |
| 10 |
3 9
|
biimtrid |
|- ( ph -> ( A. x e. B ps -> ch ) ) |