Metamath Proof Explorer


Theorem rspcimedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rspcimdv.1
|- ( ph -> A e. B )
rspcimedv.2
|- ( ( ph /\ x = A ) -> ( ch -> ps ) )
Assertion rspcimedv
|- ( ph -> ( ch -> E. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 rspcimdv.1
 |-  ( ph -> A e. B )
2 rspcimedv.2
 |-  ( ( ph /\ x = A ) -> ( ch -> ps ) )
3 2 con3d
 |-  ( ( ph /\ x = A ) -> ( -. ps -> -. ch ) )
4 1 3 rspcimdv
 |-  ( ph -> ( A. x e. B -. ps -> -. ch ) )
5 4 con2d
 |-  ( ph -> ( ch -> -. A. x e. B -. ps ) )
6 dfrex2
 |-  ( E. x e. B ps <-> -. A. x e. B -. ps )
7 5 6 syl6ibr
 |-  ( ph -> ( ch -> E. x e. B ps ) )