Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspcimdv.1 | |- ( ph -> A e. B ) |
|
| rspcimedv.2 | |- ( ( ph /\ x = A ) -> ( ch -> ps ) ) |
||
| Assertion | rspcimedv | |- ( ph -> ( ch -> E. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcimdv.1 | |- ( ph -> A e. B ) |
|
| 2 | rspcimedv.2 | |- ( ( ph /\ x = A ) -> ( ch -> ps ) ) |
|
| 3 | 2 | con3d | |- ( ( ph /\ x = A ) -> ( -. ps -> -. ch ) ) |
| 4 | 1 3 | rspcimdv | |- ( ph -> ( A. x e. B -. ps -> -. ch ) ) |
| 5 | 4 | con2d | |- ( ph -> ( ch -> -. A. x e. B -. ps ) ) |
| 6 | dfrex2 | |- ( E. x e. B ps <-> -. A. x e. B -. ps ) |
|
| 7 | 5 6 | imbitrrdi | |- ( ph -> ( ch -> E. x e. B ps ) ) |