Metamath Proof Explorer


Theorem rspcl

Description: The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses rspcl.k
|- K = ( RSpan ` R )
rspcl.b
|- B = ( Base ` R )
rspcl.u
|- U = ( LIdeal ` R )
Assertion rspcl
|- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U )

Proof

Step Hyp Ref Expression
1 rspcl.k
 |-  K = ( RSpan ` R )
2 rspcl.b
 |-  B = ( Base ` R )
3 rspcl.u
 |-  U = ( LIdeal ` R )
4 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
5 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
6 2 5 eqtri
 |-  B = ( Base ` ( ringLMod ` R ) )
7 lidlval
 |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) )
8 3 7 eqtri
 |-  U = ( LSubSp ` ( ringLMod ` R ) )
9 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
10 1 9 eqtri
 |-  K = ( LSpan ` ( ringLMod ` R ) )
11 6 8 10 lspcl
 |-  ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> ( K ` G ) e. U )
12 4 11 sylan
 |-  ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U )