| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspcl.k |  |-  K = ( RSpan ` R ) | 
						
							| 2 |  | rspcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | rspcl.u |  |-  U = ( LIdeal ` R ) | 
						
							| 4 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 5 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 6 | 2 5 | eqtri |  |-  B = ( Base ` ( ringLMod ` R ) ) | 
						
							| 7 |  | lidlval |  |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 8 | 3 7 | eqtri |  |-  U = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 9 |  | rspval |  |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) | 
						
							| 10 | 1 9 | eqtri |  |-  K = ( LSpan ` ( ringLMod ` R ) ) | 
						
							| 11 | 6 8 10 | lspcl |  |-  ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> ( K ` G ) e. U ) | 
						
							| 12 | 4 11 | sylan |  |-  ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U ) |