Step |
Hyp |
Ref |
Expression |
1 |
|
rspcl.k |
|- K = ( RSpan ` R ) |
2 |
|
rspcl.b |
|- B = ( Base ` R ) |
3 |
|
rspcl.u |
|- U = ( LIdeal ` R ) |
4 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
5 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
6 |
2 5
|
eqtri |
|- B = ( Base ` ( ringLMod ` R ) ) |
7 |
|
lidlval |
|- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
8 |
3 7
|
eqtri |
|- U = ( LSubSp ` ( ringLMod ` R ) ) |
9 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
10 |
1 9
|
eqtri |
|- K = ( LSpan ` ( ringLMod ` R ) ) |
11 |
6 8 10
|
lspcl |
|- ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> ( K ` G ) e. U ) |
12 |
4 11
|
sylan |
|- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. U ) |