Description: Special case related to rspsbc . (Contributed by NM, 10-Dec-2005) (Proof shortened by Eric Schmidt, 17-Jan-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | rspcsbela | |- ( ( A e. B /\ A. x e. B C e. D ) -> [_ A / x ]_ C e. D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspsbc | |- ( A e. B -> ( A. x e. B C e. D -> [. A / x ]. C e. D ) ) |
|
2 | sbcel1g | |- ( A e. B -> ( [. A / x ]. C e. D <-> [_ A / x ]_ C e. D ) ) |
|
3 | 1 2 | sylibd | |- ( A e. B -> ( A. x e. B C e. D -> [_ A / x ]_ C e. D ) ) |
4 | 3 | imp | |- ( ( A e. B /\ A. x e. B C e. D ) -> [_ A / x ]_ C e. D ) |