| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspct.1 |  |-  F/ x ps | 
						
							| 2 |  | df-ral |  |-  ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) | 
						
							| 3 |  | eleq1 |  |-  ( x = A -> ( x e. B <-> A e. B ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( x e. B <-> A e. B ) ) | 
						
							| 5 |  | simpr |  |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( ph <-> ps ) ) | 
						
							| 6 | 4 5 | imbi12d |  |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) | 
						
							| 7 | 6 | ex |  |-  ( x = A -> ( ( ph <-> ps ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) | 
						
							| 8 | 7 | a2i |  |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) | 
						
							| 9 | 8 | alimi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) | 
						
							| 10 |  | nfv |  |-  F/ x A e. B | 
						
							| 11 | 10 1 | nfim |  |-  F/ x ( A e. B -> ps ) | 
						
							| 12 |  | nfcv |  |-  F/_ x A | 
						
							| 13 | 11 12 | spcgft |  |-  ( A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) | 
						
							| 14 | 9 13 | syl |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) | 
						
							| 15 | 2 14 | syl7bi |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ( A e. B -> ps ) ) ) ) | 
						
							| 16 | 15 | com34 |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) ) | 
						
							| 17 | 16 | pm2.43d |  |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) |