Step |
Hyp |
Ref |
Expression |
1 |
|
rspct.1 |
|- F/ x ps |
2 |
|
df-ral |
|- ( A. x e. B ph <-> A. x ( x e. B -> ph ) ) |
3 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
4 |
3
|
adantr |
|- ( ( x = A /\ ( ph <-> ps ) ) -> ( x e. B <-> A e. B ) ) |
5 |
|
simpr |
|- ( ( x = A /\ ( ph <-> ps ) ) -> ( ph <-> ps ) ) |
6 |
4 5
|
imbi12d |
|- ( ( x = A /\ ( ph <-> ps ) ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) |
7 |
6
|
ex |
|- ( x = A -> ( ( ph <-> ps ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
8 |
7
|
a2i |
|- ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
9 |
8
|
alimi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) ) |
10 |
|
nfv |
|- F/ x A e. B |
11 |
10 1
|
nfim |
|- F/ x ( A e. B -> ps ) |
12 |
|
nfcv |
|- F/_ x A |
13 |
11 12
|
spcgft |
|- ( A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) |
14 |
9 13
|
syl |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) ) |
15 |
2 14
|
syl7bi |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ( A e. B -> ps ) ) ) ) |
16 |
15
|
com34 |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) ) |
17 |
16
|
pm2.43d |
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) |