Metamath Proof Explorer


Theorem rspct

Description: A closed version of rspc . (Contributed by Andrew Salmon, 6-Jun-2011)

Ref Expression
Hypothesis rspct.1
|- F/ x ps
Assertion rspct
|- ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 rspct.1
 |-  F/ x ps
2 df-ral
 |-  ( A. x e. B ph <-> A. x ( x e. B -> ph ) )
3 eleq1
 |-  ( x = A -> ( x e. B <-> A e. B ) )
4 3 adantr
 |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( x e. B <-> A e. B ) )
5 simpr
 |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( ph <-> ps ) )
6 4 5 imbi12d
 |-  ( ( x = A /\ ( ph <-> ps ) ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) )
7 6 ex
 |-  ( x = A -> ( ( ph <-> ps ) -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) )
8 7 a2i
 |-  ( ( x = A -> ( ph <-> ps ) ) -> ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) )
9 8 alimi
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) )
10 nfv
 |-  F/ x A e. B
11 10 1 nfim
 |-  F/ x ( A e. B -> ps )
12 nfcv
 |-  F/_ x A
13 11 12 spcgft
 |-  ( A. x ( x = A -> ( ( x e. B -> ph ) <-> ( A e. B -> ps ) ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) )
14 9 13 syl
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x ( x e. B -> ph ) -> ( A e. B -> ps ) ) ) )
15 2 14 syl7bi
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ( A e. B -> ps ) ) ) )
16 15 com34
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A e. B -> ( A. x e. B ph -> ps ) ) ) )
17 16 pm2.43d
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) -> ( A e. B -> ( A. x e. B ph -> ps ) ) )