Metamath Proof Explorer


Theorem rspe

Description: Restricted specialization. (Contributed by NM, 12-Oct-1999)

Ref Expression
Assertion rspe
|- ( ( x e. A /\ ph ) -> E. x e. A ph )

Proof

Step Hyp Ref Expression
1 19.8a
 |-  ( ( x e. A /\ ph ) -> E. x ( x e. A /\ ph ) )
2 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
3 1 2 sylibr
 |-  ( ( x e. A /\ ph ) -> E. x e. A ph )