Metamath Proof Explorer


Theorem rspec2

Description: Specialization rule for restricted quantification, with two quantifiers. (Contributed by NM, 20-Nov-1994)

Ref Expression
Hypothesis rspec2.1
|- A. x e. A A. y e. B ph
Assertion rspec2
|- ( ( x e. A /\ y e. B ) -> ph )

Proof

Step Hyp Ref Expression
1 rspec2.1
 |-  A. x e. A A. y e. B ph
2 1 rspec
 |-  ( x e. A -> A. y e. B ph )
3 2 r19.21bi
 |-  ( ( x e. A /\ y e. B ) -> ph )