Description: Existence form of rspsbca . (Contributed by NM, 29-Feb-2008) (Proof shortened by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rspesbca | |- ( ( A e. B /\ [. A / x ]. ph ) -> E. x e. B ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
2 | 1 | rspcev | |- ( ( A e. B /\ [. A / x ]. ph ) -> E. y e. B [ y / x ] ph ) |
3 | cbvrexsvw | |- ( E. x e. B ph <-> E. y e. B [ y / x ] ph ) |
|
4 | 2 3 | sylibr | |- ( ( A e. B /\ [. A / x ]. ph ) -> E. x e. B ph ) |