Metamath Proof Explorer


Theorem rspn0

Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion rspn0
|- ( A =/= (/) -> ( A. x e. A ph -> ph ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( A =/= (/) <-> E. x x e. A )
2 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
3 exim
 |-  ( A. x ( x e. A -> ph ) -> ( E. x x e. A -> E. x ph ) )
4 ax5e
 |-  ( E. x ph -> ph )
5 3 4 syl6com
 |-  ( E. x x e. A -> ( A. x ( x e. A -> ph ) -> ph ) )
6 2 5 syl5bi
 |-  ( E. x x e. A -> ( A. x e. A ph -> ph ) )
7 1 6 sylbi
 |-  ( A =/= (/) -> ( A. x e. A ph -> ph ) )