Metamath Proof Explorer


Theorem rspn0OLD

Description: Obsolete version of rspn0 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion rspn0OLD
|- ( A =/= (/) -> ( A. x e. A ph -> ph ) )

Proof

Step Hyp Ref Expression
1 n0
 |-  ( A =/= (/) <-> E. x x e. A )
2 nfra1
 |-  F/ x A. x e. A ph
3 nfv
 |-  F/ x ph
4 2 3 nfim
 |-  F/ x ( A. x e. A ph -> ph )
5 rsp
 |-  ( A. x e. A ph -> ( x e. A -> ph ) )
6 5 com12
 |-  ( x e. A -> ( A. x e. A ph -> ph ) )
7 4 6 exlimi
 |-  ( E. x x e. A -> ( A. x e. A ph -> ph ) )
8 1 7 sylbi
 |-  ( A =/= (/) -> ( A. x e. A ph -> ph ) )