Step |
Hyp |
Ref |
Expression |
1 |
|
rsprprmprmidlb.0 |
|- .0. = ( 0g ` R ) |
2 |
|
rsprprmprmidlb.b |
|- B = ( Base ` R ) |
3 |
|
rsprprmprmidlb.p |
|- P = ( RPrime ` R ) |
4 |
|
rsprprmprmidlb.k |
|- K = ( RSpan ` R ) |
5 |
|
rsprprmprmidlb.r |
|- ( ph -> R e. IDomn ) |
6 |
|
rsprprmprmidlb.x |
|- ( ph -> X e. B ) |
7 |
|
rsprprmprmidlb.1 |
|- ( ph -> X =/= .0. ) |
8 |
5
|
idomcringd |
|- ( ph -> R e. CRing ) |
9 |
8
|
adantr |
|- ( ( ph /\ X e. P ) -> R e. CRing ) |
10 |
3
|
a1i |
|- ( ph -> P = ( RPrime ` R ) ) |
11 |
10
|
eleq2d |
|- ( ph -> ( X e. P <-> X e. ( RPrime ` R ) ) ) |
12 |
11
|
biimpa |
|- ( ( ph /\ X e. P ) -> X e. ( RPrime ` R ) ) |
13 |
4 9 12
|
rsprprmprmidl |
|- ( ( ph /\ X e. P ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) |
14 |
5
|
adantr |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. IDomn ) |
15 |
6
|
adantr |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. B ) |
16 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
17 |
|
eqid |
|- ( K ` { X } ) = ( K ` { X } ) |
18 |
16 4 17 2 15 14
|
unitpidl1 |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( ( K ` { X } ) = B <-> X e. ( Unit ` R ) ) ) |
19 |
18
|
biimpar |
|- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) = B ) |
20 |
14
|
idomringd |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> R e. Ring ) |
21 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
22 |
2 21
|
prmidlnr |
|- ( ( R e. Ring /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) |
23 |
20 22
|
sylancom |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> ( K ` { X } ) =/= B ) |
24 |
23
|
adantr |
|- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> ( K ` { X } ) =/= B ) |
25 |
24
|
neneqd |
|- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ X e. ( Unit ` R ) ) -> -. ( K ` { X } ) = B ) |
26 |
19 25
|
pm2.65da |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( Unit ` R ) ) |
27 |
|
nelsn |
|- ( X =/= .0. -> -. X e. { .0. } ) |
28 |
7 27
|
syl |
|- ( ph -> -. X e. { .0. } ) |
29 |
28
|
adantr |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. { .0. } ) |
30 |
|
eqid |
|- ( ( Unit ` R ) u. { .0. } ) = ( ( Unit ` R ) u. { .0. } ) |
31 |
|
nelun |
|- ( ( ( Unit ` R ) u. { .0. } ) = ( ( Unit ` R ) u. { .0. } ) -> ( -. X e. ( ( Unit ` R ) u. { .0. } ) <-> ( -. X e. ( Unit ` R ) /\ -. X e. { .0. } ) ) ) |
32 |
30 31
|
ax-mp |
|- ( -. X e. ( ( Unit ` R ) u. { .0. } ) <-> ( -. X e. ( Unit ` R ) /\ -. X e. { .0. } ) ) |
33 |
26 29 32
|
sylanbrc |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> -. X e. ( ( Unit ` R ) u. { .0. } ) ) |
34 |
15 33
|
eldifd |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( B \ ( ( Unit ` R ) u. { .0. } ) ) ) |
35 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
36 |
20
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. Ring ) |
37 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> X e. B ) |
38 |
2 4 35 36 37
|
ellpi |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) <-> X ( ||r ` R ) x ) ) |
39 |
38
|
biimpa |
|- ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ x e. ( K ` { X } ) ) -> X ( ||r ` R ) x ) |
40 |
2 4 35 36 37
|
ellpi |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( y e. ( K ` { X } ) <-> X ( ||r ` R ) y ) ) |
41 |
40
|
biimpa |
|- ( ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) /\ y e. ( K ` { X } ) ) -> X ( ||r ` R ) y ) |
42 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> R e. CRing ) |
43 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( K ` { X } ) e. ( PrmIdeal ` R ) ) |
44 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> x e. B ) |
45 |
|
simplr |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> y e. B ) |
46 |
20
|
ad2antrr |
|- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> R e. Ring ) |
47 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> X e. B ) |
48 |
2 4 35 46 47
|
ellpi |
|- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( ( x ( .r ` R ) y ) e. ( K ` { X } ) <-> X ( ||r ` R ) ( x ( .r ` R ) y ) ) ) |
49 |
48
|
biimpar |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x ( .r ` R ) y ) e. ( K ` { X } ) ) |
50 |
2 21
|
prmidlc |
|- ( ( ( R e. CRing /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B /\ ( x ( .r ` R ) y ) e. ( K ` { X } ) ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) |
51 |
42 43 44 45 49 50
|
syl23anc |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( x e. ( K ` { X } ) \/ y e. ( K ` { X } ) ) ) |
52 |
39 41 51
|
orim12da |
|- ( ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) /\ X ( ||r ` R ) ( x ( .r ` R ) y ) ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) |
53 |
52
|
ex |
|- ( ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ x e. B ) /\ y e. B ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) |
54 |
53
|
anasss |
|- ( ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) /\ ( x e. B /\ y e. B ) ) -> ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) |
55 |
54
|
ralrimivva |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) |
56 |
2 16 1 35 21
|
isrprm |
|- ( R e. IDomn -> ( X e. ( RPrime ` R ) <-> ( X e. ( B \ ( ( Unit ` R ) u. { .0. } ) ) /\ A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) ) ) |
57 |
56
|
biimpar |
|- ( ( R e. IDomn /\ ( X e. ( B \ ( ( Unit ` R ) u. { .0. } ) ) /\ A. x e. B A. y e. B ( X ( ||r ` R ) ( x ( .r ` R ) y ) -> ( X ( ||r ` R ) x \/ X ( ||r ` R ) y ) ) ) ) -> X e. ( RPrime ` R ) ) |
58 |
14 34 55 57
|
syl12anc |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. ( RPrime ` R ) ) |
59 |
58 3
|
eleqtrrdi |
|- ( ( ph /\ ( K ` { X } ) e. ( PrmIdeal ` R ) ) -> X e. P ) |
60 |
13 59
|
impbida |
|- ( ph -> ( X e. P <-> ( K ` { X } ) e. ( PrmIdeal ` R ) ) ) |