Metamath Proof Explorer


Theorem rspsbc

Description: Restricted quantifier version of Axiom 4 of Mendelson p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 and spsbc . See also rspsbca and rspcsbela . (Contributed by NM, 17-Nov-2006) (Proof shortened by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion rspsbc
|- ( A e. B -> ( A. x e. B ph -> [. A / x ]. ph ) )

Proof

Step Hyp Ref Expression
1 cbvralsvw
 |-  ( A. x e. B ph <-> A. y e. B [ y / x ] ph )
2 dfsbcq2
 |-  ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) )
3 2 rspcv
 |-  ( A e. B -> ( A. y e. B [ y / x ] ph -> [. A / x ]. ph ) )
4 1 3 syl5bi
 |-  ( A e. B -> ( A. x e. B ph -> [. A / x ]. ph ) )