Description: Restricted quantifier version of Axiom 4 of Mendelson p. 69. This provides an axiom for a predicate calculus for a restricted domain. This theorem generalizes the unrestricted stdpc4 and spsbc . See also rspsbca and rspcsbela . (Contributed by NM, 17-Nov-2006) (Proof shortened by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | rspsbc | |- ( A e. B -> ( A. x e. B ph -> [. A / x ]. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralsvw | |- ( A. x e. B ph <-> A. y e. B [ y / x ] ph ) |
|
2 | dfsbcq2 | |- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
|
3 | 2 | rspcv | |- ( A e. B -> ( A. y e. B [ y / x ] ph -> [. A / x ]. ph ) ) |
4 | 1 3 | syl5bi | |- ( A e. B -> ( A. x e. B ph -> [. A / x ]. ph ) ) |