| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspsn.b |
|- B = ( Base ` R ) |
| 2 |
|
rspsn.k |
|- K = ( RSpan ` R ) |
| 3 |
|
rspsn.d |
|- .|| = ( ||r ` R ) |
| 4 |
|
eqcom |
|- ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x ) |
| 5 |
4
|
a1i |
|- ( ( R e. Ring /\ G e. B ) -> ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x ) ) |
| 6 |
5
|
rexbidv |
|- ( ( R e. Ring /\ G e. B ) -> ( E. a e. B x = ( a ( .r ` R ) G ) <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 7 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
| 8 |
|
rlmsca2 |
|- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
| 9 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 10 |
9 1
|
strfvi |
|- B = ( Base ` ( _I ` R ) ) |
| 11 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
| 12 |
1 11
|
eqtri |
|- B = ( Base ` ( ringLMod ` R ) ) |
| 13 |
|
rlmvsca |
|- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
| 14 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
| 15 |
2 14
|
eqtri |
|- K = ( LSpan ` ( ringLMod ` R ) ) |
| 16 |
8 10 12 13 15
|
ellspsn |
|- ( ( ( ringLMod ` R ) e. LMod /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) ) |
| 17 |
7 16
|
sylan |
|- ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) ) |
| 18 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 19 |
1 3 18
|
dvdsr2 |
|- ( G e. B -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 20 |
19
|
adantl |
|- ( ( R e. Ring /\ G e. B ) -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 21 |
6 17 20
|
3bitr4d |
|- ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> G .|| x ) ) |
| 22 |
21
|
eqabdv |
|- ( ( R e. Ring /\ G e. B ) -> ( K ` { G } ) = { x | G .|| x } ) |