Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspcl.k | |- K = ( RSpan ` R ) |
|
rspcl.b | |- B = ( Base ` R ) |
||
Assertion | rspssid | |- ( ( R e. Ring /\ G C_ B ) -> G C_ ( K ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcl.k | |- K = ( RSpan ` R ) |
|
2 | rspcl.b | |- B = ( Base ` R ) |
|
3 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
4 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
5 | 2 4 | eqtri | |- B = ( Base ` ( ringLMod ` R ) ) |
6 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
|
7 | 1 6 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) |
8 | 5 7 | lspssid | |- ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> G C_ ( K ` G ) ) |
9 | 3 8 | sylan | |- ( ( R e. Ring /\ G C_ B ) -> G C_ ( K ` G ) ) |