Metamath Proof Explorer


Theorem rspssid

Description: The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k
|- K = ( RSpan ` R )
rspcl.b
|- B = ( Base ` R )
Assertion rspssid
|- ( ( R e. Ring /\ G C_ B ) -> G C_ ( K ` G ) )

Proof

Step Hyp Ref Expression
1 rspcl.k
 |-  K = ( RSpan ` R )
2 rspcl.b
 |-  B = ( Base ` R )
3 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
4 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
5 2 4 eqtri
 |-  B = ( Base ` ( ringLMod ` R ) )
6 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
7 1 6 eqtri
 |-  K = ( LSpan ` ( ringLMod ` R ) )
8 5 7 lspssid
 |-  ( ( ( ringLMod ` R ) e. LMod /\ G C_ B ) -> G C_ ( K ` G ) )
9 3 8 sylan
 |-  ( ( R e. Ring /\ G C_ B ) -> G C_ ( K ` G ) )