Step |
Hyp |
Ref |
Expression |
1 |
|
rspcl.k |
|- K = ( RSpan ` R ) |
2 |
|
rspssp.u |
|- U = ( LIdeal ` R ) |
3 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
4 |
|
lidlval |
|- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
5 |
2 4
|
eqtri |
|- U = ( LSubSp ` ( ringLMod ` R ) ) |
6 |
|
rspval |
|- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
7 |
1 6
|
eqtri |
|- K = ( LSpan ` ( ringLMod ` R ) ) |
8 |
5 7
|
lspssp |
|- ( ( ( ringLMod ` R ) e. LMod /\ I e. U /\ G C_ I ) -> ( K ` G ) C_ I ) |
9 |
3 8
|
syl3an1 |
|- ( ( R e. Ring /\ I e. U /\ G C_ I ) -> ( K ` G ) C_ I ) |