Metamath Proof Explorer


Theorem rspw

Description: Restricted specialization. Weak version of rsp , requiring ax-8 , but not ax-12 . (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypothesis rspw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion rspw
|- ( A. x e. A ph -> ( x e. A -> ph ) )

Proof

Step Hyp Ref Expression
1 rspw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 3 1 imbi12d
 |-  ( x = y -> ( ( x e. A -> ph ) <-> ( y e. A -> ps ) ) )
5 4 spw
 |-  ( A. x ( x e. A -> ph ) -> ( x e. A -> ph ) )
6 2 5 sylbi
 |-  ( A. x e. A ph -> ( x e. A -> ph ) )