Step |
Hyp |
Ref |
Expression |
1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
2 |
1
|
adantr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. NN ) |
3 |
2
|
nnred |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. RR ) |
4 |
|
0red |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 e. RR ) |
5 |
2
|
nngt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 < P ) |
6 |
4 3 5
|
ltled |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 <_ P ) |
7 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
8 |
7
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N e. RR ) |
9 |
|
eluz2n0 |
|- ( N e. ( ZZ>= ` 2 ) -> N =/= 0 ) |
10 |
9
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> N =/= 0 ) |
11 |
8 10
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 / N ) e. RR ) |
12 |
3 6 11
|
recxpcld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. RR ) |
13 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
14 |
|
recgt1i |
|- ( ( N e. RR /\ 1 < N ) -> ( 0 < ( 1 / N ) /\ ( 1 / N ) < 1 ) ) |
15 |
7 13 14
|
syl2anc |
|- ( N e. ( ZZ>= ` 2 ) -> ( 0 < ( 1 / N ) /\ ( 1 / N ) < 1 ) ) |
16 |
15
|
simprd |
|- ( N e. ( ZZ>= ` 2 ) -> ( 1 / N ) < 1 ) |
17 |
16
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 1 / N ) < 1 ) |
18 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
19 |
18
|
adantr |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 < P ) |
20 |
|
1red |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
21 |
3 19 11 20
|
cxpltd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( 1 / N ) < 1 <-> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) ) |
22 |
17 21
|
mpbid |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) < ( P ^c 1 ) ) |
23 |
2
|
nncnd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> P e. CC ) |
24 |
23
|
cxp1d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 1 ) = P ) |
25 |
22 24
|
breqtrd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) < P ) |
26 |
12 25
|
ltned |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) =/= P ) |
27 |
26
|
neneqd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) = P ) |
28 |
27
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = P ) |
29 |
23
|
cxp0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 0 ) = 1 ) |
30 |
15
|
simpld |
|- ( N e. ( ZZ>= ` 2 ) -> 0 < ( 1 / N ) ) |
31 |
30
|
adantl |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 0 < ( 1 / N ) ) |
32 |
3 19 4 11
|
cxpltd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( 0 < ( 1 / N ) <-> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) ) |
33 |
31 32
|
mpbid |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c 0 ) < ( P ^c ( 1 / N ) ) ) |
34 |
29 33
|
eqbrtrrd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> 1 < ( P ^c ( 1 / N ) ) ) |
35 |
20 34
|
gtned |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) =/= 1 ) |
36 |
35
|
neneqd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) = 1 ) |
37 |
36
|
adantr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) = 1 ) |
38 |
|
dvdsprime |
|- ( ( P e. Prime /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
39 |
38
|
adantlr |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P <-> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
40 |
39
|
biimpd |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( ( P ^c ( 1 / N ) ) || P -> ( ( P ^c ( 1 / N ) ) = P \/ ( P ^c ( 1 / N ) ) = 1 ) ) ) |
41 |
28 37 40
|
mtord |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) |
42 |
|
nan |
|- ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) <-> ( ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> -. ( P ^c ( 1 / N ) ) || P ) ) |
43 |
41 42
|
mpbir |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) |
44 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
45 |
44
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> P e. ZZ ) |
46 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
47 |
46
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> N e. NN ) |
48 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) e. NN ) |
49 |
|
zrtdvds |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
50 |
45 47 48 49
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. NN ) -> ( P ^c ( 1 / N ) ) || P ) |
51 |
50
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( P ^c ( 1 / N ) ) || P ) ) |
52 |
51
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. NN -> ( ( P ^c ( 1 / N ) ) e. NN /\ ( P ^c ( 1 / N ) ) || P ) ) ) |
53 |
43 52
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. NN ) |
54 |
1
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
55 |
54
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> P e. RR+ ) |
56 |
7
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N e. RR ) |
57 |
9
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> N =/= 0 ) |
58 |
56 57
|
rereccld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> ( 1 / N ) e. RR ) |
59 |
55 58
|
cxpgt0d |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. ZZ ) -> 0 < ( P ^c ( 1 / N ) ) ) |
60 |
59
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> 0 < ( P ^c ( 1 / N ) ) ) ) |
61 |
60
|
ancld |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) ) |
62 |
|
elnnz |
|- ( ( P ^c ( 1 / N ) ) e. NN <-> ( ( P ^c ( 1 / N ) ) e. ZZ /\ 0 < ( P ^c ( 1 / N ) ) ) ) |
63 |
61 62
|
imbitrrdi |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. ZZ -> ( P ^c ( 1 / N ) ) e. NN ) ) |
64 |
53 63
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. ZZ ) |
65 |
44
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> P e. ZZ ) |
66 |
46
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> N e. NN ) |
67 |
|
simp3 |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. QQ ) |
68 |
|
zrtelqelz |
|- ( ( P e. ZZ /\ N e. NN /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
69 |
65 66 67 68
|
syl3anc |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) /\ ( P ^c ( 1 / N ) ) e. QQ ) -> ( P ^c ( 1 / N ) ) e. ZZ ) |
70 |
69
|
3expia |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( ( P ^c ( 1 / N ) ) e. QQ -> ( P ^c ( 1 / N ) ) e. ZZ ) ) |
71 |
64 70
|
mtod |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> -. ( P ^c ( 1 / N ) ) e. QQ ) |
72 |
12 71
|
eldifd |
|- ( ( P e. Prime /\ N e. ( ZZ>= ` 2 ) ) -> ( P ^c ( 1 / N ) ) e. ( RR \ QQ ) ) |