Metamath Proof Explorer


Theorem ruALT

Description: Alternate proof of ru , simplified using (indirectly) the Axiom of Regularity ax-reg . (Contributed by Alan Sare, 4-Oct-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ruALT
|- { x | x e/ x } e/ _V

Proof

Step Hyp Ref Expression
1 vprc
 |-  -. _V e. _V
2 1 nelir
 |-  _V e/ _V
3 ruv
 |-  { x | x e/ x } = _V
4 neleq1
 |-  ( { x | x e/ x } = _V -> ( { x | x e/ x } e/ _V <-> _V e/ _V ) )
5 3 4 ax-mp
 |-  ( { x | x e/ x } e/ _V <-> _V e/ _V )
6 2 5 mpbir
 |-  { x | x e/ x } e/ _V