Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
|
ruclem10.6 |
|- ( ph -> M e. NN0 ) |
6 |
|
ruclem10.7 |
|- ( ph -> N e. NN0 ) |
7 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
8 |
7 5
|
ffvelrnd |
|- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
9 |
|
xp1st |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
10 |
8 9
|
syl |
|- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
11 |
6 5
|
ifcld |
|- ( ph -> if ( M <_ N , N , M ) e. NN0 ) |
12 |
7 11
|
ffvelrnd |
|- ( ph -> ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) ) |
13 |
|
xp1st |
|- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
14 |
12 13
|
syl |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
15 |
7 6
|
ffvelrnd |
|- ( ph -> ( G ` N ) e. ( RR X. RR ) ) |
16 |
|
xp2nd |
|- ( ( G ` N ) e. ( RR X. RR ) -> ( 2nd ` ( G ` N ) ) e. RR ) |
17 |
15 16
|
syl |
|- ( ph -> ( 2nd ` ( G ` N ) ) e. RR ) |
18 |
5
|
nn0red |
|- ( ph -> M e. RR ) |
19 |
6
|
nn0red |
|- ( ph -> N e. RR ) |
20 |
|
max1 |
|- ( ( M e. RR /\ N e. RR ) -> M <_ if ( M <_ N , N , M ) ) |
21 |
18 19 20
|
syl2anc |
|- ( ph -> M <_ if ( M <_ N , N , M ) ) |
22 |
5
|
nn0zd |
|- ( ph -> M e. ZZ ) |
23 |
11
|
nn0zd |
|- ( ph -> if ( M <_ N , N , M ) e. ZZ ) |
24 |
|
eluz |
|- ( ( M e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` M ) <-> M <_ if ( M <_ N , N , M ) ) ) |
26 |
21 25
|
mpbird |
|- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` M ) ) |
27 |
1 2 3 4 5 26
|
ruclem9 |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
28 |
27
|
simpld |
|- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) ) |
29 |
|
xp2nd |
|- ( ( G ` if ( M <_ N , N , M ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
30 |
12 29
|
syl |
|- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) e. RR ) |
31 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ if ( M <_ N , N , M ) e. NN0 ) -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
32 |
11 31
|
mpdan |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) ) |
33 |
|
max2 |
|- ( ( M e. RR /\ N e. RR ) -> N <_ if ( M <_ N , N , M ) ) |
34 |
18 19 33
|
syl2anc |
|- ( ph -> N <_ if ( M <_ N , N , M ) ) |
35 |
6
|
nn0zd |
|- ( ph -> N e. ZZ ) |
36 |
|
eluz |
|- ( ( N e. ZZ /\ if ( M <_ N , N , M ) e. ZZ ) -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
37 |
35 23 36
|
syl2anc |
|- ( ph -> ( if ( M <_ N , N , M ) e. ( ZZ>= ` N ) <-> N <_ if ( M <_ N , N , M ) ) ) |
38 |
34 37
|
mpbird |
|- ( ph -> if ( M <_ N , N , M ) e. ( ZZ>= ` N ) ) |
39 |
1 2 3 4 6 38
|
ruclem9 |
|- ( ph -> ( ( 1st ` ( G ` N ) ) <_ ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) /\ ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) ) |
40 |
39
|
simprd |
|- ( ph -> ( 2nd ` ( G ` if ( M <_ N , N , M ) ) ) <_ ( 2nd ` ( G ` N ) ) ) |
41 |
14 30 17 32 40
|
ltletrd |
|- ( ph -> ( 1st ` ( G ` if ( M <_ N , N , M ) ) ) < ( 2nd ` ( G ` N ) ) ) |
42 |
10 14 17 28 41
|
lelttrd |
|- ( ph -> ( 1st ` ( G ` M ) ) < ( 2nd ` ( G ` N ) ) ) |