Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
6 |
|
1stcof |
|- ( G : NN0 --> ( RR X. RR ) -> ( 1st o. G ) : NN0 --> RR ) |
7 |
5 6
|
syl |
|- ( ph -> ( 1st o. G ) : NN0 --> RR ) |
8 |
7
|
frnd |
|- ( ph -> ran ( 1st o. G ) C_ RR ) |
9 |
7
|
fdmd |
|- ( ph -> dom ( 1st o. G ) = NN0 ) |
10 |
|
0nn0 |
|- 0 e. NN0 |
11 |
|
ne0i |
|- ( 0 e. NN0 -> NN0 =/= (/) ) |
12 |
10 11
|
mp1i |
|- ( ph -> NN0 =/= (/) ) |
13 |
9 12
|
eqnetrd |
|- ( ph -> dom ( 1st o. G ) =/= (/) ) |
14 |
|
dm0rn0 |
|- ( dom ( 1st o. G ) = (/) <-> ran ( 1st o. G ) = (/) ) |
15 |
14
|
necon3bii |
|- ( dom ( 1st o. G ) =/= (/) <-> ran ( 1st o. G ) =/= (/) ) |
16 |
13 15
|
sylib |
|- ( ph -> ran ( 1st o. G ) =/= (/) ) |
17 |
|
fvco3 |
|- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
18 |
5 17
|
sylan |
|- ( ( ph /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
19 |
1
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> F : NN --> RR ) |
20 |
2
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
21 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
22 |
10
|
a1i |
|- ( ( ph /\ n e. NN0 ) -> 0 e. NN0 ) |
23 |
19 20 3 4 21 22
|
ruclem10 |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` 0 ) ) ) |
24 |
1 2 3 4
|
ruclem4 |
|- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |
25 |
24
|
fveq2d |
|- ( ph -> ( 2nd ` ( G ` 0 ) ) = ( 2nd ` <. 0 , 1 >. ) ) |
26 |
|
c0ex |
|- 0 e. _V |
27 |
|
1ex |
|- 1 e. _V |
28 |
26 27
|
op2nd |
|- ( 2nd ` <. 0 , 1 >. ) = 1 |
29 |
25 28
|
eqtrdi |
|- ( ph -> ( 2nd ` ( G ` 0 ) ) = 1 ) |
30 |
29
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> ( 2nd ` ( G ` 0 ) ) = 1 ) |
31 |
23 30
|
breqtrd |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < 1 ) |
32 |
5
|
ffvelrnda |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. ( RR X. RR ) ) |
33 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
34 |
32 33
|
syl |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) e. RR ) |
35 |
|
1re |
|- 1 e. RR |
36 |
|
ltle |
|- ( ( ( 1st ` ( G ` n ) ) e. RR /\ 1 e. RR ) -> ( ( 1st ` ( G ` n ) ) < 1 -> ( 1st ` ( G ` n ) ) <_ 1 ) ) |
37 |
34 35 36
|
sylancl |
|- ( ( ph /\ n e. NN0 ) -> ( ( 1st ` ( G ` n ) ) < 1 -> ( 1st ` ( G ` n ) ) <_ 1 ) ) |
38 |
31 37
|
mpd |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) <_ 1 ) |
39 |
18 38
|
eqbrtrd |
|- ( ( ph /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) <_ 1 ) |
40 |
39
|
ralrimiva |
|- ( ph -> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) |
41 |
7
|
ffnd |
|- ( ph -> ( 1st o. G ) Fn NN0 ) |
42 |
|
breq1 |
|- ( z = ( ( 1st o. G ) ` n ) -> ( z <_ 1 <-> ( ( 1st o. G ) ` n ) <_ 1 ) ) |
43 |
42
|
ralrn |
|- ( ( 1st o. G ) Fn NN0 -> ( A. z e. ran ( 1st o. G ) z <_ 1 <-> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) ) |
44 |
41 43
|
syl |
|- ( ph -> ( A. z e. ran ( 1st o. G ) z <_ 1 <-> A. n e. NN0 ( ( 1st o. G ) ` n ) <_ 1 ) ) |
45 |
40 44
|
mpbird |
|- ( ph -> A. z e. ran ( 1st o. G ) z <_ 1 ) |
46 |
8 16 45
|
3jca |
|- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |