Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
|
ruc.6 |
|- S = sup ( ran ( 1st o. G ) , RR , < ) |
6 |
1 2 3 4
|
ruclem11 |
|- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |
7 |
6
|
simp1d |
|- ( ph -> ran ( 1st o. G ) C_ RR ) |
8 |
6
|
simp2d |
|- ( ph -> ran ( 1st o. G ) =/= (/) ) |
9 |
|
1re |
|- 1 e. RR |
10 |
6
|
simp3d |
|- ( ph -> A. z e. ran ( 1st o. G ) z <_ 1 ) |
11 |
|
brralrspcev |
|- ( ( 1 e. RR /\ A. z e. ran ( 1st o. G ) z <_ 1 ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
12 |
9 10 11
|
sylancr |
|- ( ph -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
13 |
7 8 12
|
suprcld |
|- ( ph -> sup ( ran ( 1st o. G ) , RR , < ) e. RR ) |
14 |
5 13
|
eqeltrid |
|- ( ph -> S e. RR ) |
15 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : NN --> RR ) |
16 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
17 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
18 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
19 |
|
ffvelrn |
|- ( ( G : NN0 --> ( RR X. RR ) /\ ( n - 1 ) e. NN0 ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
20 |
17 18 19
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
21 |
|
xp1st |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
22 |
20 21
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
23 |
|
xp2nd |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
24 |
20 23
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
25 |
1
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. RR ) |
26 |
|
eqid |
|- ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
27 |
|
eqid |
|- ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
28 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
29 |
18 28
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
30 |
15 16 22 24 25 26 27 29
|
ruclem3 |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
31 |
1 2 3 4
|
ruclem7 |
|- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
32 |
18 31
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
33 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
34 |
33
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
35 |
|
ax-1cn |
|- 1 e. CC |
36 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
37 |
34 35 36
|
sylancl |
|- ( ( ph /\ n e. NN ) -> ( ( n - 1 ) + 1 ) = n ) |
38 |
37
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( G ` n ) ) |
39 |
|
1st2nd2 |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
40 |
20 39
|
syl |
|- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
41 |
37
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( F ` ( ( n - 1 ) + 1 ) ) = ( F ` n ) ) |
42 |
40 41
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
43 |
32 38 42
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
44 |
43
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
45 |
44
|
breq2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) <-> ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) ) |
46 |
43
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
47 |
46
|
breq1d |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) <-> ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
48 |
45 47
|
orbi12d |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) <-> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) ) |
49 |
30 48
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) ) |
50 |
7
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) C_ RR ) |
51 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) =/= (/) ) |
52 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
53 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
54 |
|
fvco3 |
|- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
55 |
17 53 54
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
56 |
17
|
adantr |
|- ( ( ph /\ n e. NN ) -> G : NN0 --> ( RR X. RR ) ) |
57 |
|
1stcof |
|- ( G : NN0 --> ( RR X. RR ) -> ( 1st o. G ) : NN0 --> RR ) |
58 |
|
ffn |
|- ( ( 1st o. G ) : NN0 --> RR -> ( 1st o. G ) Fn NN0 ) |
59 |
56 57 58
|
3syl |
|- ( ( ph /\ n e. NN ) -> ( 1st o. G ) Fn NN0 ) |
60 |
53
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
61 |
|
fnfvelrn |
|- ( ( ( 1st o. G ) Fn NN0 /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
62 |
59 60 61
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
63 |
55 62
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. ran ( 1st o. G ) ) |
64 |
50 51 52 63
|
suprubd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ sup ( ran ( 1st o. G ) , RR , < ) ) |
65 |
64 5
|
breqtrrdi |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ S ) |
66 |
|
ffvelrn |
|- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( G ` n ) e. ( RR X. RR ) ) |
67 |
17 53 66
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) |
68 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
69 |
67 68
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) |
70 |
14
|
adantr |
|- ( ( ph /\ n e. NN ) -> S e. RR ) |
71 |
|
ltletr |
|- ( ( ( F ` n ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ S e. RR ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
72 |
25 69 70 71
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
73 |
65 72
|
mpan2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) -> ( F ` n ) < S ) ) |
74 |
|
fvco3 |
|- ( ( G : NN0 --> ( RR X. RR ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
75 |
56 74
|
sylan |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
76 |
56
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. ( RR X. RR ) ) |
77 |
|
xp1st |
|- ( ( G ` k ) e. ( RR X. RR ) -> ( 1st ` ( G ` k ) ) e. RR ) |
78 |
76 77
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) e. RR ) |
79 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
80 |
67 79
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
81 |
80
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
82 |
15
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> F : NN --> RR ) |
83 |
16
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
84 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> k e. NN0 ) |
85 |
60
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> n e. NN0 ) |
86 |
82 83 3 4 84 85
|
ruclem10 |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) < ( 2nd ` ( G ` n ) ) ) |
87 |
78 81 86
|
ltled |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) <_ ( 2nd ` ( G ` n ) ) ) |
88 |
75 87
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
89 |
88
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
90 |
|
breq1 |
|- ( z = ( ( 1st o. G ) ` k ) -> ( z <_ ( 2nd ` ( G ` n ) ) <-> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
91 |
90
|
ralrn |
|- ( ( 1st o. G ) Fn NN0 -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
92 |
59 91
|
syl |
|- ( ( ph /\ n e. NN ) -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
93 |
89 92
|
mpbird |
|- ( ( ph /\ n e. NN ) -> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) |
94 |
|
suprleub |
|- ( ( ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) /\ ( 2nd ` ( G ` n ) ) e. RR ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
95 |
50 51 52 80 94
|
syl31anc |
|- ( ( ph /\ n e. NN ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
96 |
93 95
|
mpbird |
|- ( ( ph /\ n e. NN ) -> sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) ) |
97 |
5 96
|
eqbrtrid |
|- ( ( ph /\ n e. NN ) -> S <_ ( 2nd ` ( G ` n ) ) ) |
98 |
|
lelttr |
|- ( ( S e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( F ` n ) e. RR ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
99 |
70 80 25 98
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
100 |
97 99
|
mpand |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) -> S < ( F ` n ) ) ) |
101 |
73 100
|
orim12d |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
102 |
49 101
|
mpd |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) |
103 |
25 70
|
lttri2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) =/= S <-> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
104 |
102 103
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) =/= S ) |
105 |
104
|
neneqd |
|- ( ( ph /\ n e. NN ) -> -. ( F ` n ) = S ) |
106 |
105
|
nrexdv |
|- ( ph -> -. E. n e. NN ( F ` n ) = S ) |
107 |
|
risset |
|- ( S e. ran F <-> E. z e. ran F z = S ) |
108 |
|
ffn |
|- ( F : NN --> RR -> F Fn NN ) |
109 |
|
eqeq1 |
|- ( z = ( F ` n ) -> ( z = S <-> ( F ` n ) = S ) ) |
110 |
109
|
rexrn |
|- ( F Fn NN -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
111 |
1 108 110
|
3syl |
|- ( ph -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
112 |
107 111
|
syl5bb |
|- ( ph -> ( S e. ran F <-> E. n e. NN ( F ` n ) = S ) ) |
113 |
106 112
|
mtbird |
|- ( ph -> -. S e. ran F ) |
114 |
14 113
|
eldifd |
|- ( ph -> S e. ( RR \ ran F ) ) |