Step |
Hyp |
Ref |
Expression |
1 |
|
forn |
|- ( F : NN -onto-> RR -> ran F = RR ) |
2 |
1
|
difeq2d |
|- ( F : NN -onto-> RR -> ( RR \ ran F ) = ( RR \ RR ) ) |
3 |
|
difid |
|- ( RR \ RR ) = (/) |
4 |
2 3
|
eqtrdi |
|- ( F : NN -onto-> RR -> ( RR \ ran F ) = (/) ) |
5 |
|
reex |
|- RR e. _V |
6 |
5 5
|
xpex |
|- ( RR X. RR ) e. _V |
7 |
6 5
|
mpoex |
|- ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) e. _V |
8 |
7
|
isseti |
|- E. d d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) |
9 |
|
fof |
|- ( F : NN -onto-> RR -> F : NN --> RR ) |
10 |
9
|
adantr |
|- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> F : NN --> RR ) |
11 |
|
simpr |
|- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
12 |
|
eqid |
|- ( { <. 0 , <. 0 , 1 >. >. } u. F ) = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
13 |
|
eqid |
|- seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) = seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) |
14 |
|
eqid |
|- sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) = sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) |
15 |
10 11 12 13 14
|
ruclem12 |
|- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) e. ( RR \ ran F ) ) |
16 |
|
n0i |
|- ( sup ( ran ( 1st o. seq 0 ( d , ( { <. 0 , <. 0 , 1 >. >. } u. F ) ) ) , RR , < ) e. ( RR \ ran F ) -> -. ( RR \ ran F ) = (/) ) |
17 |
15 16
|
syl |
|- ( ( F : NN -onto-> RR /\ d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) -> -. ( RR \ ran F ) = (/) ) |
18 |
17
|
ex |
|- ( F : NN -onto-> RR -> ( d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) -> -. ( RR \ ran F ) = (/) ) ) |
19 |
18
|
exlimdv |
|- ( F : NN -onto-> RR -> ( E. d d = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) -> -. ( RR \ ran F ) = (/) ) ) |
20 |
8 19
|
mpi |
|- ( F : NN -onto-> RR -> -. ( RR \ ran F ) = (/) ) |
21 |
4 20
|
pm2.65i |
|- -. F : NN -onto-> RR |