Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruclem1.3 |
|- ( ph -> A e. RR ) |
4 |
|
ruclem1.4 |
|- ( ph -> B e. RR ) |
5 |
|
ruclem1.5 |
|- ( ph -> M e. RR ) |
6 |
|
ruclem1.6 |
|- X = ( 1st ` ( <. A , B >. D M ) ) |
7 |
|
ruclem1.7 |
|- Y = ( 2nd ` ( <. A , B >. D M ) ) |
8 |
|
ruclem2.8 |
|- ( ph -> A < B ) |
9 |
3 4
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
10 |
9
|
rehalfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. RR ) |
11 |
5 10
|
lenltd |
|- ( ph -> ( M <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < M ) ) |
12 |
|
avglt2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
13 |
3 4 12
|
syl2anc |
|- ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |
14 |
8 13
|
mpbid |
|- ( ph -> ( ( A + B ) / 2 ) < B ) |
15 |
|
avglt1 |
|- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
16 |
10 4 15
|
syl2anc |
|- ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
17 |
14 16
|
mpbid |
|- ( ph -> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
18 |
10 4
|
readdcld |
|- ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) |
19 |
18
|
rehalfcld |
|- ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) |
20 |
|
lelttr |
|- ( ( M e. RR /\ ( ( A + B ) / 2 ) e. RR /\ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
21 |
5 10 19 20
|
syl3anc |
|- ( ph -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
22 |
17 21
|
mpan2d |
|- ( ph -> ( M <_ ( ( A + B ) / 2 ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
23 |
11 22
|
sylbird |
|- ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
24 |
23
|
imp |
|- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
25 |
1 2 3 4 5 6 7
|
ruclem1 |
|- ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) |
26 |
25
|
simp2d |
|- ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) |
27 |
|
iffalse |
|- ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
28 |
26 27
|
sylan9eq |
|- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> X = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) |
29 |
24 28
|
breqtrrd |
|- ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < X ) |
30 |
29
|
ex |
|- ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < X ) ) |
31 |
30
|
con1d |
|- ( ph -> ( -. M < X -> ( ( A + B ) / 2 ) < M ) ) |
32 |
25
|
simp3d |
|- ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) |
33 |
|
iftrue |
|- ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = ( ( A + B ) / 2 ) ) |
34 |
32 33
|
sylan9eq |
|- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y = ( ( A + B ) / 2 ) ) |
35 |
|
simpr |
|- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> ( ( A + B ) / 2 ) < M ) |
36 |
34 35
|
eqbrtrd |
|- ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y < M ) |
37 |
36
|
ex |
|- ( ph -> ( ( ( A + B ) / 2 ) < M -> Y < M ) ) |
38 |
31 37
|
syld |
|- ( ph -> ( -. M < X -> Y < M ) ) |
39 |
38
|
orrd |
|- ( ph -> ( M < X \/ Y < M ) ) |