| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ruc.1 |  |-  ( ph -> F : NN --> RR ) | 
						
							| 2 |  | ruc.2 |  |-  ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) | 
						
							| 3 |  | ruclem1.3 |  |-  ( ph -> A e. RR ) | 
						
							| 4 |  | ruclem1.4 |  |-  ( ph -> B e. RR ) | 
						
							| 5 |  | ruclem1.5 |  |-  ( ph -> M e. RR ) | 
						
							| 6 |  | ruclem1.6 |  |-  X = ( 1st ` ( <. A , B >. D M ) ) | 
						
							| 7 |  | ruclem1.7 |  |-  Y = ( 2nd ` ( <. A , B >. D M ) ) | 
						
							| 8 |  | ruclem2.8 |  |-  ( ph -> A < B ) | 
						
							| 9 | 3 4 | readdcld |  |-  ( ph -> ( A + B ) e. RR ) | 
						
							| 10 | 9 | rehalfcld |  |-  ( ph -> ( ( A + B ) / 2 ) e. RR ) | 
						
							| 11 | 5 10 | lenltd |  |-  ( ph -> ( M <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < M ) ) | 
						
							| 12 |  | avglt2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) | 
						
							| 13 | 3 4 12 | syl2anc |  |-  ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) | 
						
							| 14 | 8 13 | mpbid |  |-  ( ph -> ( ( A + B ) / 2 ) < B ) | 
						
							| 15 |  | avglt1 |  |-  ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 16 | 10 4 15 | syl2anc |  |-  ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 17 | 14 16 | mpbid |  |-  ( ph -> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) | 
						
							| 18 | 10 4 | readdcld |  |-  ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR ) | 
						
							| 19 | 18 | rehalfcld |  |-  ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) | 
						
							| 20 |  | lelttr |  |-  ( ( M e. RR /\ ( ( A + B ) / 2 ) e. RR /\ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 21 | 5 10 19 20 | syl3anc |  |-  ( ph -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 22 | 17 21 | mpan2d |  |-  ( ph -> ( M <_ ( ( A + B ) / 2 ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 23 | 11 22 | sylbird |  |-  ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) | 
						
							| 25 | 1 2 3 4 5 6 7 | ruclem1 |  |-  ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) ) | 
						
							| 26 | 25 | simp2d |  |-  ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) ) | 
						
							| 27 |  | iffalse |  |-  ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) | 
						
							| 28 | 26 27 | sylan9eq |  |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> X = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) | 
						
							| 29 | 24 28 | breqtrrd |  |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < X ) | 
						
							| 30 | 29 | ex |  |-  ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < X ) ) | 
						
							| 31 | 30 | con1d |  |-  ( ph -> ( -. M < X -> ( ( A + B ) / 2 ) < M ) ) | 
						
							| 32 | 25 | simp3d |  |-  ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) | 
						
							| 33 |  | iftrue |  |-  ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = ( ( A + B ) / 2 ) ) | 
						
							| 34 | 32 33 | sylan9eq |  |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y = ( ( A + B ) / 2 ) ) | 
						
							| 35 |  | simpr |  |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> ( ( A + B ) / 2 ) < M ) | 
						
							| 36 | 34 35 | eqbrtrd |  |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y < M ) | 
						
							| 37 | 36 | ex |  |-  ( ph -> ( ( ( A + B ) / 2 ) < M -> Y < M ) ) | 
						
							| 38 | 31 37 | syld |  |-  ( ph -> ( -. M < X -> Y < M ) ) | 
						
							| 39 | 38 | orrd |  |-  ( ph -> ( M < X \/ Y < M ) ) |