Metamath Proof Explorer


Theorem ruclem3

Description: Lemma for ruc . The constructed interval [ X , Y ] always excludes M . (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1
|- ( ph -> F : NN --> RR )
ruc.2
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) )
ruclem1.3
|- ( ph -> A e. RR )
ruclem1.4
|- ( ph -> B e. RR )
ruclem1.5
|- ( ph -> M e. RR )
ruclem1.6
|- X = ( 1st ` ( <. A , B >. D M ) )
ruclem1.7
|- Y = ( 2nd ` ( <. A , B >. D M ) )
ruclem2.8
|- ( ph -> A < B )
Assertion ruclem3
|- ( ph -> ( M < X \/ Y < M ) )

Proof

Step Hyp Ref Expression
1 ruc.1
 |-  ( ph -> F : NN --> RR )
2 ruc.2
 |-  ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) )
3 ruclem1.3
 |-  ( ph -> A e. RR )
4 ruclem1.4
 |-  ( ph -> B e. RR )
5 ruclem1.5
 |-  ( ph -> M e. RR )
6 ruclem1.6
 |-  X = ( 1st ` ( <. A , B >. D M ) )
7 ruclem1.7
 |-  Y = ( 2nd ` ( <. A , B >. D M ) )
8 ruclem2.8
 |-  ( ph -> A < B )
9 3 4 readdcld
 |-  ( ph -> ( A + B ) e. RR )
10 9 rehalfcld
 |-  ( ph -> ( ( A + B ) / 2 ) e. RR )
11 5 10 lenltd
 |-  ( ph -> ( M <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < M ) )
12 avglt2
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) )
13 3 4 12 syl2anc
 |-  ( ph -> ( A < B <-> ( ( A + B ) / 2 ) < B ) )
14 8 13 mpbid
 |-  ( ph -> ( ( A + B ) / 2 ) < B )
15 avglt1
 |-  ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
16 10 4 15 syl2anc
 |-  ( ph -> ( ( ( A + B ) / 2 ) < B <-> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
17 14 16 mpbid
 |-  ( ph -> ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) )
18 10 4 readdcld
 |-  ( ph -> ( ( ( A + B ) / 2 ) + B ) e. RR )
19 18 rehalfcld
 |-  ( ph -> ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR )
20 lelttr
 |-  ( ( M e. RR /\ ( ( A + B ) / 2 ) e. RR /\ ( ( ( ( A + B ) / 2 ) + B ) / 2 ) e. RR ) -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
21 5 10 19 20 syl3anc
 |-  ( ph -> ( ( M <_ ( ( A + B ) / 2 ) /\ ( ( A + B ) / 2 ) < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
22 17 21 mpan2d
 |-  ( ph -> ( M <_ ( ( A + B ) / 2 ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
23 11 22 sylbird
 |-  ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
24 23 imp
 |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < ( ( ( ( A + B ) / 2 ) + B ) / 2 ) )
25 1 2 3 4 5 6 7 ruclem1
 |-  ( ph -> ( ( <. A , B >. D M ) e. ( RR X. RR ) /\ X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) /\ Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) ) )
26 25 simp2d
 |-  ( ph -> X = if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) )
27 iffalse
 |-  ( -. ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , A , ( ( ( ( A + B ) / 2 ) + B ) / 2 ) ) = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) )
28 26 27 sylan9eq
 |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> X = ( ( ( ( A + B ) / 2 ) + B ) / 2 ) )
29 24 28 breqtrrd
 |-  ( ( ph /\ -. ( ( A + B ) / 2 ) < M ) -> M < X )
30 29 ex
 |-  ( ph -> ( -. ( ( A + B ) / 2 ) < M -> M < X ) )
31 30 con1d
 |-  ( ph -> ( -. M < X -> ( ( A + B ) / 2 ) < M ) )
32 25 simp3d
 |-  ( ph -> Y = if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) )
33 iftrue
 |-  ( ( ( A + B ) / 2 ) < M -> if ( ( ( A + B ) / 2 ) < M , ( ( A + B ) / 2 ) , B ) = ( ( A + B ) / 2 ) )
34 32 33 sylan9eq
 |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y = ( ( A + B ) / 2 ) )
35 simpr
 |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> ( ( A + B ) / 2 ) < M )
36 34 35 eqbrtrd
 |-  ( ( ph /\ ( ( A + B ) / 2 ) < M ) -> Y < M )
37 36 ex
 |-  ( ph -> ( ( ( A + B ) / 2 ) < M -> Y < M ) )
38 31 37 syld
 |-  ( ph -> ( -. M < X -> Y < M ) )
39 38 orrd
 |-  ( ph -> ( M < X \/ Y < M ) )