| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
| 2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
| 4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
| 5 |
4
|
fveq1i |
|- ( G ` 0 ) = ( seq 0 ( D , C ) ` 0 ) |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
|
ffn |
|- ( F : NN --> RR -> F Fn NN ) |
| 8 |
|
fnresdm |
|- ( F Fn NN -> ( F |` NN ) = F ) |
| 9 |
1 7 8
|
3syl |
|- ( ph -> ( F |` NN ) = F ) |
| 10 |
|
dfn2 |
|- NN = ( NN0 \ { 0 } ) |
| 11 |
10
|
reseq2i |
|- ( F |` NN ) = ( F |` ( NN0 \ { 0 } ) ) |
| 12 |
9 11
|
eqtr3di |
|- ( ph -> F = ( F |` ( NN0 \ { 0 } ) ) ) |
| 13 |
12
|
uneq2d |
|- ( ph -> ( { <. 0 , <. 0 , 1 >. >. } u. F ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) |
| 14 |
3 13
|
eqtrid |
|- ( ph -> C = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ) |
| 15 |
14
|
fveq1d |
|- ( ph -> ( C ` 0 ) = ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) ) |
| 16 |
|
c0ex |
|- 0 e. _V |
| 17 |
16
|
a1i |
|- ( T. -> 0 e. _V ) |
| 18 |
|
opex |
|- <. 0 , 1 >. e. _V |
| 19 |
18
|
a1i |
|- ( T. -> <. 0 , 1 >. e. _V ) |
| 20 |
|
eqid |
|- ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) = ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) |
| 21 |
17 19 20
|
fvsnun1 |
|- ( T. -> ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. ) |
| 22 |
21
|
mptru |
|- ( ( { <. 0 , <. 0 , 1 >. >. } u. ( F |` ( NN0 \ { 0 } ) ) ) ` 0 ) = <. 0 , 1 >. |
| 23 |
15 22
|
eqtrdi |
|- ( ph -> ( C ` 0 ) = <. 0 , 1 >. ) |
| 24 |
6 23
|
seq1i |
|- ( ph -> ( seq 0 ( D , C ) ` 0 ) = <. 0 , 1 >. ) |
| 25 |
5 24
|
eqtrid |
|- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |