Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
4
|
fveq1i |
|- ( G ` 0 ) = ( seq 0 ( D , C ) ` 0 ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( D , C ) ` 0 ) = ( C ` 0 ) ) |
8 |
6 7
|
ax-mp |
|- ( seq 0 ( D , C ) ` 0 ) = ( C ` 0 ) |
9 |
5 8
|
eqtri |
|- ( G ` 0 ) = ( C ` 0 ) |
10 |
1 2 3 4
|
ruclem4 |
|- ( ph -> ( G ` 0 ) = <. 0 , 1 >. ) |
11 |
9 10
|
eqtr3id |
|- ( ph -> ( C ` 0 ) = <. 0 , 1 >. ) |
12 |
|
0re |
|- 0 e. RR |
13 |
|
1re |
|- 1 e. RR |
14 |
|
opelxpi |
|- ( ( 0 e. RR /\ 1 e. RR ) -> <. 0 , 1 >. e. ( RR X. RR ) ) |
15 |
12 13 14
|
mp2an |
|- <. 0 , 1 >. e. ( RR X. RR ) |
16 |
11 15
|
eqeltrdi |
|- ( ph -> ( C ` 0 ) e. ( RR X. RR ) ) |
17 |
|
1st2nd2 |
|- ( z e. ( RR X. RR ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
18 |
17
|
ad2antrl |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
19 |
18
|
oveq1d |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( z D w ) = ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
20 |
1
|
adantr |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> F : NN --> RR ) |
21 |
2
|
adantr |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
22 |
|
xp1st |
|- ( z e. ( RR X. RR ) -> ( 1st ` z ) e. RR ) |
23 |
22
|
ad2antrl |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( 1st ` z ) e. RR ) |
24 |
|
xp2nd |
|- ( z e. ( RR X. RR ) -> ( 2nd ` z ) e. RR ) |
25 |
24
|
ad2antrl |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( 2nd ` z ) e. RR ) |
26 |
|
simprr |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> w e. RR ) |
27 |
|
eqid |
|- ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
28 |
|
eqid |
|- ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) |
29 |
20 21 23 25 26 27 28
|
ruclem1 |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) e. ( RR X. RR ) /\ ( 1st ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = if ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) < w , ( 1st ` z ) , ( ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) + ( 2nd ` z ) ) / 2 ) ) /\ ( 2nd ` ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) ) = if ( ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) < w , ( ( ( 1st ` z ) + ( 2nd ` z ) ) / 2 ) , ( 2nd ` z ) ) ) ) |
30 |
29
|
simp1d |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( <. ( 1st ` z ) , ( 2nd ` z ) >. D w ) e. ( RR X. RR ) ) |
31 |
19 30
|
eqeltrd |
|- ( ( ph /\ ( z e. ( RR X. RR ) /\ w e. RR ) ) -> ( z D w ) e. ( RR X. RR ) ) |
32 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
33 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
34 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
35 |
34
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
36 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
37 |
35 36
|
eqtr4i |
|- ( ZZ>= ` ( 0 + 1 ) ) = NN |
38 |
37
|
eleq2i |
|- ( z e. ( ZZ>= ` ( 0 + 1 ) ) <-> z e. NN ) |
39 |
3
|
equncomi |
|- C = ( F u. { <. 0 , <. 0 , 1 >. >. } ) |
40 |
39
|
fveq1i |
|- ( C ` z ) = ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) |
41 |
|
nnne0 |
|- ( z e. NN -> z =/= 0 ) |
42 |
41
|
necomd |
|- ( z e. NN -> 0 =/= z ) |
43 |
|
fvunsn |
|- ( 0 =/= z -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) = ( F ` z ) ) |
44 |
42 43
|
syl |
|- ( z e. NN -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` z ) = ( F ` z ) ) |
45 |
40 44
|
eqtrid |
|- ( z e. NN -> ( C ` z ) = ( F ` z ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ z e. NN ) -> ( C ` z ) = ( F ` z ) ) |
47 |
1
|
ffvelrnda |
|- ( ( ph /\ z e. NN ) -> ( F ` z ) e. RR ) |
48 |
46 47
|
eqeltrd |
|- ( ( ph /\ z e. NN ) -> ( C ` z ) e. RR ) |
49 |
38 48
|
sylan2b |
|- ( ( ph /\ z e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( C ` z ) e. RR ) |
50 |
16 31 32 33 49
|
seqf2 |
|- ( ph -> seq 0 ( D , C ) : NN0 --> ( RR X. RR ) ) |
51 |
4
|
feq1i |
|- ( G : NN0 --> ( RR X. RR ) <-> seq 0 ( D , C ) : NN0 --> ( RR X. RR ) ) |
52 |
50 51
|
sylibr |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |