Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
|
simpr |
|- ( ( ph /\ N e. NN0 ) -> N e. NN0 ) |
6 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
7 |
5 6
|
eleqtrdi |
|- ( ( ph /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
8 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 0 ) -> ( seq 0 ( D , C ) ` ( N + 1 ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) ) |
9 |
7 8
|
syl |
|- ( ( ph /\ N e. NN0 ) -> ( seq 0 ( D , C ) ` ( N + 1 ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) ) |
10 |
4
|
fveq1i |
|- ( G ` ( N + 1 ) ) = ( seq 0 ( D , C ) ` ( N + 1 ) ) |
11 |
4
|
fveq1i |
|- ( G ` N ) = ( seq 0 ( D , C ) ` N ) |
12 |
11
|
oveq1i |
|- ( ( G ` N ) D ( C ` ( N + 1 ) ) ) = ( ( seq 0 ( D , C ) ` N ) D ( C ` ( N + 1 ) ) ) |
13 |
9 10 12
|
3eqtr4g |
|- ( ( ph /\ N e. NN0 ) -> ( G ` ( N + 1 ) ) = ( ( G ` N ) D ( C ` ( N + 1 ) ) ) ) |
14 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
15 |
14
|
adantl |
|- ( ( ph /\ N e. NN0 ) -> ( N + 1 ) e. NN ) |
16 |
15
|
nnne0d |
|- ( ( ph /\ N e. NN0 ) -> ( N + 1 ) =/= 0 ) |
17 |
16
|
necomd |
|- ( ( ph /\ N e. NN0 ) -> 0 =/= ( N + 1 ) ) |
18 |
3
|
equncomi |
|- C = ( F u. { <. 0 , <. 0 , 1 >. >. } ) |
19 |
18
|
fveq1i |
|- ( C ` ( N + 1 ) ) = ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` ( N + 1 ) ) |
20 |
|
fvunsn |
|- ( 0 =/= ( N + 1 ) -> ( ( F u. { <. 0 , <. 0 , 1 >. >. } ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
21 |
19 20
|
eqtrid |
|- ( 0 =/= ( N + 1 ) -> ( C ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
22 |
17 21
|
syl |
|- ( ( ph /\ N e. NN0 ) -> ( C ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
23 |
22
|
oveq2d |
|- ( ( ph /\ N e. NN0 ) -> ( ( G ` N ) D ( C ` ( N + 1 ) ) ) = ( ( G ` N ) D ( F ` ( N + 1 ) ) ) ) |
24 |
13 23
|
eqtrd |
|- ( ( ph /\ N e. NN0 ) -> ( G ` ( N + 1 ) ) = ( ( G ` N ) D ( F ` ( N + 1 ) ) ) ) |