| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
| 2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
| 4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
| 5 |
|
ruclem9.6 |
|- ( ph -> M e. NN0 ) |
| 6 |
|
ruclem9.7 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 7 |
|
2fveq3 |
|- ( k = M -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` M ) ) ) |
| 8 |
7
|
breq2d |
|- ( k = M -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) ) |
| 9 |
|
2fveq3 |
|- ( k = M -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` M ) ) ) |
| 10 |
9
|
breq1d |
|- ( k = M -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 11 |
8 10
|
anbi12d |
|- ( k = M -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 12 |
11
|
imbi2d |
|- ( k = M -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 13 |
|
2fveq3 |
|- ( k = n -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` n ) ) ) |
| 14 |
13
|
breq2d |
|- ( k = n -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) ) ) |
| 15 |
|
2fveq3 |
|- ( k = n -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` n ) ) ) |
| 16 |
15
|
breq1d |
|- ( k = n -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 17 |
14 16
|
anbi12d |
|- ( k = n -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( k = n -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 19 |
|
2fveq3 |
|- ( k = ( n + 1 ) -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` ( n + 1 ) ) ) ) |
| 20 |
19
|
breq2d |
|- ( k = ( n + 1 ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 21 |
|
2fveq3 |
|- ( k = ( n + 1 ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` ( n + 1 ) ) ) ) |
| 22 |
21
|
breq1d |
|- ( k = ( n + 1 ) -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 23 |
20 22
|
anbi12d |
|- ( k = ( n + 1 ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 24 |
23
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 25 |
|
2fveq3 |
|- ( k = N -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` N ) ) ) |
| 26 |
25
|
breq2d |
|- ( k = N -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) ) ) |
| 27 |
|
2fveq3 |
|- ( k = N -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` N ) ) ) |
| 28 |
27
|
breq1d |
|- ( k = N -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 29 |
26 28
|
anbi12d |
|- ( k = N -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 30 |
29
|
imbi2d |
|- ( k = N -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 31 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 32 |
31 5
|
ffvelcdmd |
|- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
| 33 |
|
xp1st |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
| 35 |
34
|
leidd |
|- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) |
| 36 |
|
xp2nd |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
| 37 |
32 36
|
syl |
|- ( ph -> ( 2nd ` ( G ` M ) ) e. RR ) |
| 38 |
37
|
leidd |
|- ( ph -> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) |
| 39 |
35 38
|
jca |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 40 |
1
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> F : NN --> RR ) |
| 41 |
2
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 42 |
31
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> G : NN0 --> ( RR X. RR ) ) |
| 43 |
|
eluznn0 |
|- ( ( M e. NN0 /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
| 44 |
5 43
|
sylan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
| 45 |
42 44
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 46 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 47 |
45 46
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 48 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 49 |
45 48
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 50 |
|
nn0p1nn |
|- ( n e. NN0 -> ( n + 1 ) e. NN ) |
| 51 |
44 50
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN ) |
| 52 |
40 51
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
| 53 |
|
eqid |
|- ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 54 |
|
eqid |
|- ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 55 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
| 56 |
44 55
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
| 57 |
40 41 47 49 52 53 54 56
|
ruclem2 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) < ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 58 |
57
|
simp1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 59 |
1 2 3 4
|
ruclem7 |
|- ( ( ph /\ n e. NN0 ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
| 60 |
44 59
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
| 61 |
|
1st2nd2 |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 62 |
45 61
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
| 63 |
62
|
oveq1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( G ` n ) D ( F ` ( n + 1 ) ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 64 |
60 63
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
| 65 |
64
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 66 |
58 65
|
breqtrrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) |
| 67 |
34
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` M ) ) e. RR ) |
| 68 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
| 69 |
44 68
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN0 ) |
| 70 |
42 69
|
ffvelcdmd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) e. ( RR X. RR ) ) |
| 71 |
|
xp1st |
|- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 72 |
70 71
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 73 |
|
letr |
|- ( ( ( 1st ` ( G ` M ) ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 74 |
67 47 72 73
|
syl3anc |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 75 |
66 74
|
mpan2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
| 76 |
64
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
| 77 |
57
|
simp3d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 78 |
76 77
|
eqbrtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 79 |
|
xp2nd |
|- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 80 |
70 79
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
| 81 |
37
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
| 82 |
|
letr |
|- ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( 2nd ` ( G ` M ) ) e. RR ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 83 |
80 49 81 82
|
syl3anc |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 84 |
78 83
|
mpand |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
| 85 |
75 84
|
anim12d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 86 |
85
|
expcom |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 87 |
86
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
| 88 |
12 18 24 30 39 87
|
uzind4i |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
| 89 |
6 88
|
mpcom |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |