Step |
Hyp |
Ref |
Expression |
1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
5 |
|
ruclem9.6 |
|- ( ph -> M e. NN0 ) |
6 |
|
ruclem9.7 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
7 |
|
2fveq3 |
|- ( k = M -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` M ) ) ) |
8 |
7
|
breq2d |
|- ( k = M -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) ) |
9 |
|
2fveq3 |
|- ( k = M -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` M ) ) ) |
10 |
9
|
breq1d |
|- ( k = M -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
11 |
8 10
|
anbi12d |
|- ( k = M -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
12 |
11
|
imbi2d |
|- ( k = M -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
13 |
|
2fveq3 |
|- ( k = n -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` n ) ) ) |
14 |
13
|
breq2d |
|- ( k = n -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) ) ) |
15 |
|
2fveq3 |
|- ( k = n -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` n ) ) ) |
16 |
15
|
breq1d |
|- ( k = n -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
17 |
14 16
|
anbi12d |
|- ( k = n -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
18 |
17
|
imbi2d |
|- ( k = n -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
19 |
|
2fveq3 |
|- ( k = ( n + 1 ) -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` ( n + 1 ) ) ) ) |
20 |
19
|
breq2d |
|- ( k = ( n + 1 ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
21 |
|
2fveq3 |
|- ( k = ( n + 1 ) -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` ( n + 1 ) ) ) ) |
22 |
21
|
breq1d |
|- ( k = ( n + 1 ) -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
23 |
20 22
|
anbi12d |
|- ( k = ( n + 1 ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
24 |
23
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
25 |
|
2fveq3 |
|- ( k = N -> ( 1st ` ( G ` k ) ) = ( 1st ` ( G ` N ) ) ) |
26 |
25
|
breq2d |
|- ( k = N -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) <-> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) ) ) |
27 |
|
2fveq3 |
|- ( k = N -> ( 2nd ` ( G ` k ) ) = ( 2nd ` ( G ` N ) ) ) |
28 |
27
|
breq1d |
|- ( k = N -> ( ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) <-> ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
29 |
26 28
|
anbi12d |
|- ( k = N -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) <-> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
30 |
29
|
imbi2d |
|- ( k = N -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` k ) ) /\ ( 2nd ` ( G ` k ) ) <_ ( 2nd ` ( G ` M ) ) ) ) <-> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
31 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
32 |
31 5
|
ffvelrnd |
|- ( ph -> ( G ` M ) e. ( RR X. RR ) ) |
33 |
|
xp1st |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 1st ` ( G ` M ) ) e. RR ) |
34 |
32 33
|
syl |
|- ( ph -> ( 1st ` ( G ` M ) ) e. RR ) |
35 |
34
|
leidd |
|- ( ph -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) ) |
36 |
|
xp2nd |
|- ( ( G ` M ) e. ( RR X. RR ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
37 |
32 36
|
syl |
|- ( ph -> ( 2nd ` ( G ` M ) ) e. RR ) |
38 |
37
|
leidd |
|- ( ph -> ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) |
39 |
35 38
|
jca |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` M ) ) /\ ( 2nd ` ( G ` M ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
40 |
1
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> F : NN --> RR ) |
41 |
2
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
42 |
31
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> G : NN0 --> ( RR X. RR ) ) |
43 |
|
eluznn0 |
|- ( ( M e. NN0 /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
44 |
5 43
|
sylan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> n e. NN0 ) |
45 |
42 44
|
ffvelrnd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) e. ( RR X. RR ) ) |
46 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
47 |
45 46
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) e. RR ) |
48 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
49 |
45 48
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
50 |
|
nn0p1nn |
|- ( n e. NN0 -> ( n + 1 ) e. NN ) |
51 |
44 50
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN ) |
52 |
40 51
|
ffvelrnd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
53 |
|
eqid |
|- ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
54 |
|
eqid |
|- ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
55 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ n e. NN0 ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
56 |
44 55
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) < ( 2nd ` ( G ` n ) ) ) |
57 |
40 41 47 49 52 53 54 56
|
ruclem2 |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) < ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) /\ ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) ) |
58 |
57
|
simp1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
59 |
1 2 3 4
|
ruclem7 |
|- ( ( ph /\ n e. NN0 ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
60 |
44 59
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( ( G ` n ) D ( F ` ( n + 1 ) ) ) ) |
61 |
|
1st2nd2 |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
62 |
45 61
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` n ) = <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. ) |
63 |
62
|
oveq1d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( G ` n ) D ( F ` ( n + 1 ) ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
64 |
60 63
|
eqtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) = ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) |
65 |
64
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
66 |
58 65
|
breqtrrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) |
67 |
34
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` M ) ) e. RR ) |
68 |
|
peano2nn0 |
|- ( n e. NN0 -> ( n + 1 ) e. NN0 ) |
69 |
44 68
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( n + 1 ) e. NN0 ) |
70 |
42 69
|
ffvelrnd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( G ` ( n + 1 ) ) e. ( RR X. RR ) ) |
71 |
|
xp1st |
|- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
72 |
70 71
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) |
73 |
|
letr |
|- ( ( ( 1st ` ( G ` M ) ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ ( 1st ` ( G ` ( n + 1 ) ) ) e. RR ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
74 |
67 47 72 73
|
syl3anc |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
75 |
66 74
|
mpan2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) -> ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) ) ) |
76 |
64
|
fveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) ) |
77 |
57
|
simp3d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( <. ( 1st ` ( G ` n ) ) , ( 2nd ` ( G ` n ) ) >. D ( F ` ( n + 1 ) ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
78 |
76 77
|
eqbrtrd |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) ) |
79 |
|
xp2nd |
|- ( ( G ` ( n + 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
80 |
70 79
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR ) |
81 |
37
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( 2nd ` ( G ` M ) ) e. RR ) |
82 |
|
letr |
|- ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( 2nd ` ( G ` M ) ) e. RR ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
83 |
80 49 81 82
|
syl3anc |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
84 |
78 83
|
mpand |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) -> ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |
85 |
75 84
|
anim12d |
|- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
86 |
85
|
expcom |
|- ( n e. ( ZZ>= ` M ) -> ( ph -> ( ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
87 |
86
|
a2d |
|- ( n e. ( ZZ>= ` M ) -> ( ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) <_ ( 2nd ` ( G ` M ) ) ) ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` ( n + 1 ) ) ) /\ ( 2nd ` ( G ` ( n + 1 ) ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) ) |
88 |
12 18 24 30 39 87
|
uzind4i |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) ) |
89 |
6 88
|
mpcom |
|- ( ph -> ( ( 1st ` ( G ` M ) ) <_ ( 1st ` ( G ` N ) ) /\ ( 2nd ` ( G ` N ) ) <_ ( 2nd ` ( G ` M ) ) ) ) |