Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlk.v |
|- V = ( Vtx ` G ) |
2 |
|
rusgrnumwwlk.l |
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) |
3 |
|
simpr |
|- ( ( G e. USPGraph /\ P e. V ) -> P e. V ) |
4 |
|
0nn0 |
|- 0 e. NN0 |
5 |
1 2
|
rusgrnumwwlklem |
|- ( ( P e. V /\ 0 e. NN0 ) -> ( P L 0 ) = ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) ) |
6 |
3 4 5
|
sylancl |
|- ( ( G e. USPGraph /\ P e. V ) -> ( P L 0 ) = ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) ) |
7 |
|
df-rab |
|- { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } |
8 |
7
|
a1i |
|- ( ( G e. USPGraph /\ P e. V ) -> { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } ) |
9 |
|
wwlksn0s |
|- ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } |
10 |
9
|
a1i |
|- ( ( G e. USPGraph /\ P e. V ) -> ( 0 WWalksN G ) = { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) |
11 |
10
|
eleq2d |
|- ( ( G e. USPGraph /\ P e. V ) -> ( w e. ( 0 WWalksN G ) <-> w e. { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } ) ) |
12 |
|
rabid |
|- ( w e. { w e. Word ( Vtx ` G ) | ( # ` w ) = 1 } <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) |
13 |
11 12
|
bitrdi |
|- ( ( G e. USPGraph /\ P e. V ) -> ( w e. ( 0 WWalksN G ) <-> ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) ) ) |
14 |
13
|
anbi1d |
|- ( ( G e. USPGraph /\ P e. V ) -> ( ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) ) ) |
15 |
14
|
abbidv |
|- ( ( G e. USPGraph /\ P e. V ) -> { w | ( w e. ( 0 WWalksN G ) /\ ( w ` 0 ) = P ) } = { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } ) |
16 |
|
wrdl1s1 |
|- ( P e. ( Vtx ` G ) -> ( v = <" P "> <-> ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 /\ ( v ` 0 ) = P ) ) ) |
17 |
|
df-3an |
|- ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 /\ ( v ` 0 ) = P ) <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) |
18 |
16 17
|
bitr2di |
|- ( P e. ( Vtx ` G ) -> ( ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) <-> v = <" P "> ) ) |
19 |
|
vex |
|- v e. _V |
20 |
|
eleq1w |
|- ( w = v -> ( w e. Word ( Vtx ` G ) <-> v e. Word ( Vtx ` G ) ) ) |
21 |
|
fveqeq2 |
|- ( w = v -> ( ( # ` w ) = 1 <-> ( # ` v ) = 1 ) ) |
22 |
20 21
|
anbi12d |
|- ( w = v -> ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) <-> ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) ) ) |
23 |
|
fveq1 |
|- ( w = v -> ( w ` 0 ) = ( v ` 0 ) ) |
24 |
23
|
eqeq1d |
|- ( w = v -> ( ( w ` 0 ) = P <-> ( v ` 0 ) = P ) ) |
25 |
22 24
|
anbi12d |
|- ( w = v -> ( ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) ) |
26 |
19 25
|
elab |
|- ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> ( ( v e. Word ( Vtx ` G ) /\ ( # ` v ) = 1 ) /\ ( v ` 0 ) = P ) ) |
27 |
|
velsn |
|- ( v e. { <" P "> } <-> v = <" P "> ) |
28 |
18 26 27
|
3bitr4g |
|- ( P e. ( Vtx ` G ) -> ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> v e. { <" P "> } ) ) |
29 |
28 1
|
eleq2s |
|- ( P e. V -> ( v e. { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } <-> v e. { <" P "> } ) ) |
30 |
29
|
eqrdv |
|- ( P e. V -> { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } = { <" P "> } ) |
31 |
30
|
adantl |
|- ( ( G e. USPGraph /\ P e. V ) -> { w | ( ( w e. Word ( Vtx ` G ) /\ ( # ` w ) = 1 ) /\ ( w ` 0 ) = P ) } = { <" P "> } ) |
32 |
8 15 31
|
3eqtrd |
|- ( ( G e. USPGraph /\ P e. V ) -> { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } = { <" P "> } ) |
33 |
32
|
fveq2d |
|- ( ( G e. USPGraph /\ P e. V ) -> ( # ` { w e. ( 0 WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` { <" P "> } ) ) |
34 |
|
s1cl |
|- ( P e. V -> <" P "> e. Word V ) |
35 |
|
hashsng |
|- ( <" P "> e. Word V -> ( # ` { <" P "> } ) = 1 ) |
36 |
34 35
|
syl |
|- ( P e. V -> ( # ` { <" P "> } ) = 1 ) |
37 |
36
|
adantl |
|- ( ( G e. USPGraph /\ P e. V ) -> ( # ` { <" P "> } ) = 1 ) |
38 |
6 33 37
|
3eqtrd |
|- ( ( G e. USPGraph /\ P e. V ) -> ( P L 0 ) = 1 ) |