| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rusgrnumwwlk.v |
|- V = ( Vtx ` G ) |
| 2 |
|
rusgrnumwwlk.l |
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) |
| 3 |
|
simpr |
|- ( ( G RegUSGraph K /\ P e. V ) -> P e. V ) |
| 4 |
|
1nn0 |
|- 1 e. NN0 |
| 5 |
1 2
|
rusgrnumwwlklem |
|- ( ( P e. V /\ 1 e. NN0 ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) ) |
| 6 |
3 4 5
|
sylancl |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) ) |
| 7 |
1
|
rusgrnumwwlkl1 |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K ) |
| 8 |
6 7
|
eqtrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = K ) |