| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rusgrnumwwlkl1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
|
iswwlksn |
|- ( 1 e. NN0 -> ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
| 5 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
| 6 |
1 5
|
iswwlks |
|- ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 7 |
6
|
anbi1i |
|- ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
| 8 |
4 7
|
bitri |
|- ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
| 9 |
8
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) |
| 10 |
9
|
anbi1d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) ) ) |
| 11 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 12 |
11
|
eqeq2i |
|- ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) |
| 13 |
12
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) ) |
| 14 |
13
|
anbi2d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
| 15 |
|
3anass |
|- ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
| 16 |
15
|
a1i |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 17 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
| 18 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 19 |
17 18
|
eqtrdi |
|- ( w = (/) -> ( # ` w ) = 0 ) |
| 20 |
|
2ne0 |
|- 2 =/= 0 |
| 21 |
20
|
nesymi |
|- -. 0 = 2 |
| 22 |
|
eqeq1 |
|- ( ( # ` w ) = 0 -> ( ( # ` w ) = 2 <-> 0 = 2 ) ) |
| 23 |
21 22
|
mtbiri |
|- ( ( # ` w ) = 0 -> -. ( # ` w ) = 2 ) |
| 24 |
19 23
|
syl |
|- ( w = (/) -> -. ( # ` w ) = 2 ) |
| 25 |
24
|
necon2ai |
|- ( ( # ` w ) = 2 -> w =/= (/) ) |
| 26 |
25
|
adantl |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> w =/= (/) ) |
| 27 |
26
|
biantrurd |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 28 |
|
oveq1 |
|- ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = ( 2 - 1 ) ) |
| 29 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 30 |
28 29
|
eqtrdi |
|- ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = 1 ) |
| 31 |
30
|
oveq2d |
|- ( ( # ` w ) = 2 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) |
| 32 |
31
|
adantl |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) |
| 33 |
32
|
raleqdv |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 34 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 35 |
34
|
raleqi |
|- ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 36 |
|
c0ex |
|- 0 e. _V |
| 37 |
|
fveq2 |
|- ( i = 0 -> ( w ` i ) = ( w ` 0 ) ) |
| 38 |
|
fv0p1e1 |
|- ( i = 0 -> ( w ` ( i + 1 ) ) = ( w ` 1 ) ) |
| 39 |
37 38
|
preq12d |
|- ( i = 0 -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( w ` 0 ) , ( w ` 1 ) } ) |
| 40 |
39
|
eleq1d |
|- ( i = 0 -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 41 |
36 40
|
ralsn |
|- ( A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) |
| 42 |
35 41
|
bitri |
|- ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) |
| 43 |
33 42
|
bitrdi |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 44 |
43
|
anbi2d |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 45 |
16 27 44
|
3bitr2d |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 46 |
45
|
ex |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = 2 -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
| 47 |
46
|
pm5.32rd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
| 48 |
14 47
|
bitrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
| 49 |
48
|
anbi1d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) ) ) |
| 50 |
|
anass |
|- ( ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) |
| 51 |
49 50
|
bitrdi |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) |
| 52 |
|
anass |
|- ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) |
| 53 |
|
ancom |
|- ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 54 |
|
df-3an |
|- ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 55 |
53 54
|
bitr4i |
|- ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
| 56 |
55
|
anbi2i |
|- ( ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 57 |
52 56
|
bitri |
|- ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
| 58 |
57
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
| 59 |
10 51 58
|
3bitrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
| 60 |
59
|
rabbidva2 |
|- ( ( G RegUSGraph K /\ P e. V ) -> { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) |
| 61 |
60
|
fveq2d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) ) |
| 62 |
1
|
rusgrnumwrdl2 |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = K ) |
| 63 |
61 62
|
eqtrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K ) |