Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlkl1.v |
|- V = ( Vtx ` G ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
iswwlksn |
|- ( 1 e. NN0 -> ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) |
4 |
2 3
|
ax-mp |
|- ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
5 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
6 |
1 5
|
iswwlks |
|- ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
7 |
6
|
anbi1i |
|- ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
8 |
4 7
|
bitri |
|- ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) |
9 |
8
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) |
10 |
9
|
anbi1d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) ) ) |
11 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
12 |
11
|
eqeq2i |
|- ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) |
13 |
12
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) ) |
14 |
13
|
anbi2d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
15 |
|
3anass |
|- ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) |
16 |
15
|
a1i |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
17 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
18 |
|
hash0 |
|- ( # ` (/) ) = 0 |
19 |
17 18
|
eqtrdi |
|- ( w = (/) -> ( # ` w ) = 0 ) |
20 |
|
2ne0 |
|- 2 =/= 0 |
21 |
20
|
nesymi |
|- -. 0 = 2 |
22 |
|
eqeq1 |
|- ( ( # ` w ) = 0 -> ( ( # ` w ) = 2 <-> 0 = 2 ) ) |
23 |
21 22
|
mtbiri |
|- ( ( # ` w ) = 0 -> -. ( # ` w ) = 2 ) |
24 |
19 23
|
syl |
|- ( w = (/) -> -. ( # ` w ) = 2 ) |
25 |
24
|
necon2ai |
|- ( ( # ` w ) = 2 -> w =/= (/) ) |
26 |
25
|
adantl |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> w =/= (/) ) |
27 |
26
|
biantrurd |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
28 |
|
oveq1 |
|- ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = ( 2 - 1 ) ) |
29 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
30 |
28 29
|
eqtrdi |
|- ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = 1 ) |
31 |
30
|
oveq2d |
|- ( ( # ` w ) = 2 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) |
32 |
31
|
adantl |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) |
33 |
32
|
raleqdv |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
34 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
35 |
34
|
raleqi |
|- ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
36 |
|
c0ex |
|- 0 e. _V |
37 |
|
fveq2 |
|- ( i = 0 -> ( w ` i ) = ( w ` 0 ) ) |
38 |
|
fv0p1e1 |
|- ( i = 0 -> ( w ` ( i + 1 ) ) = ( w ` 1 ) ) |
39 |
37 38
|
preq12d |
|- ( i = 0 -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( w ` 0 ) , ( w ` 1 ) } ) |
40 |
39
|
eleq1d |
|- ( i = 0 -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
41 |
36 40
|
ralsn |
|- ( A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) |
42 |
35 41
|
bitri |
|- ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) |
43 |
33 42
|
bitrdi |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
44 |
43
|
anbi2d |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
45 |
16 27 44
|
3bitr2d |
|- ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
46 |
45
|
ex |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = 2 -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
47 |
46
|
pm5.32rd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
48 |
14 47
|
bitrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) |
49 |
48
|
anbi1d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) ) ) |
50 |
|
anass |
|- ( ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) |
51 |
49 50
|
bitrdi |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) |
52 |
|
anass |
|- ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) |
53 |
|
ancom |
|- ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
54 |
|
df-3an |
|- ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
55 |
53 54
|
bitr4i |
|- ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) |
56 |
55
|
anbi2i |
|- ( ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
57 |
52 56
|
bitri |
|- ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) |
58 |
57
|
a1i |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
59 |
10 51 58
|
3bitrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) |
60 |
59
|
rabbidva2 |
|- ( ( G RegUSGraph K /\ P e. V ) -> { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) |
61 |
60
|
fveq2d |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) ) |
62 |
1
|
rusgrnumwrdl2 |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = K ) |
63 |
61 62
|
eqtrd |
|- ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K ) |