Step |
Hyp |
Ref |
Expression |
1 |
|
fveq1 |
|- ( w = Y -> ( w ` 0 ) = ( Y ` 0 ) ) |
2 |
1
|
eqeq1d |
|- ( w = Y -> ( ( w ` 0 ) = P <-> ( Y ` 0 ) = P ) ) |
3 |
2
|
elrab |
|- ( Y e. { w e. Z | ( w ` 0 ) = P } <-> ( Y e. Z /\ ( Y ` 0 ) = P ) ) |
4 |
|
ibar |
|- ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) ) ) |
5 |
|
3anass |
|- ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) ) |
6 |
|
3ancoma |
|- ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) |
7 |
5 6
|
bitr3i |
|- ( ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) |
8 |
4 7
|
bitrdi |
|- ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) ) |
9 |
8
|
ad2antlr |
|- ( ( ( Y e. Z /\ ( Y ` 0 ) = P ) /\ w e. X ) -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) ) |
10 |
9
|
rabbidva |
|- ( ( Y e. Z /\ ( Y ` 0 ) = P ) -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } ) |
11 |
3 10
|
sylbi |
|- ( Y e. { w e. Z | ( w ` 0 ) = P } -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } ) |