Metamath Proof Explorer


Theorem rusgrnumwwlkslem

Description: Lemma for rusgrnumwwlks . (Contributed by Alexander van der Vekens, 23-Aug-2018)

Ref Expression
Assertion rusgrnumwwlkslem
|- ( Y e. { w e. Z | ( w ` 0 ) = P } -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } )

Proof

Step Hyp Ref Expression
1 fveq1
 |-  ( w = Y -> ( w ` 0 ) = ( Y ` 0 ) )
2 1 eqeq1d
 |-  ( w = Y -> ( ( w ` 0 ) = P <-> ( Y ` 0 ) = P ) )
3 2 elrab
 |-  ( Y e. { w e. Z | ( w ` 0 ) = P } <-> ( Y e. Z /\ ( Y ` 0 ) = P ) )
4 ibar
 |-  ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) ) )
5 3anass
 |-  ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) )
6 3ancoma
 |-  ( ( ( Y ` 0 ) = P /\ ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) )
7 5 6 bitr3i
 |-  ( ( ( Y ` 0 ) = P /\ ( ph /\ ps ) ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) )
8 4 7 bitrdi
 |-  ( ( Y ` 0 ) = P -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) )
9 8 ad2antlr
 |-  ( ( ( Y e. Z /\ ( Y ` 0 ) = P ) /\ w e. X ) -> ( ( ph /\ ps ) <-> ( ph /\ ( Y ` 0 ) = P /\ ps ) ) )
10 9 rabbidva
 |-  ( ( Y e. Z /\ ( Y ` 0 ) = P ) -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } )
11 3 10 sylbi
 |-  ( Y e. { w e. Z | ( w ` 0 ) = P } -> { w e. X | ( ph /\ ps ) } = { w e. X | ( ph /\ ( Y ` 0 ) = P /\ ps ) } )