Metamath Proof Explorer


Theorem rusgrprop

Description: The properties of a k-regular simple graph. (Contributed by Alexander van der Vekens, 8-Jul-2018) (Revised by AV, 18-Dec-2020)

Ref Expression
Assertion rusgrprop
|- ( G RegUSGraph K -> ( G e. USGraph /\ G RegGraph K ) )

Proof

Step Hyp Ref Expression
1 df-rusgr
 |-  RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) }
2 1 bropaex12
 |-  ( G RegUSGraph K -> ( G e. _V /\ K e. _V ) )
3 isrusgr
 |-  ( ( G e. _V /\ K e. _V ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) )
4 3 biimpd
 |-  ( ( G e. _V /\ K e. _V ) -> ( G RegUSGraph K -> ( G e. USGraph /\ G RegGraph K ) ) )
5 2 4 mpcom
 |-  ( G RegUSGraph K -> ( G e. USGraph /\ G RegGraph K ) )